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CHAPTER 1

INTRODUCTION

I. Two-Dimensional Thrust Reversing and Vectoring Nozzles

Two-dimensional nozzles have many advantages for

fighter aircraft over conventional axisymmetric nozzles.

Two-dimensional nozzles can be more easily faired to the

airframe and their use, on twin engine aircraft, eliminates

the high aft end drag from the "gutter" region between

axisymmetric nozzles. In addition, two-dimensional nozzles

can be adapted to thrust reversing and/or thrust vectoring

with less weight penalty than conventional axisymmetric

nozzles.

Thrust reversing and thrust vectoring capabilities are

likely to be required of future fighter aircraft. The use

of thrust reversal on landing reduces landing roll and the

use of thrust vectoring for propulsive lift can reduce both

takeoff and landing rolls. This short takeoff and landing

capability is important for operation from bomb damaged

runways.

Thrust vectoring and reversing may also be used during



flight to increase the aircraft's maneuverability. Thrust

reversing can modulate the thrust with no spool-up delays,

and thrust vectoring on aircraft with aft mounted nozzles is

an effective alternative pitch control. This latter

capability is important because experimental studies have

shown considerable loss of elevator effectiveness on some

configurations when in-flight thrust reversing is used.

The design of two-dimensional thrust reversing and

thrust vectoring nozzles requires considerable understanding

of nozzle internal flow fields. For example, if there were

large variations in nozzle discharge coefficients during

thrust reverser deployment it could adversly affect the

engine performance by causing a mismatch between the choked

turbine entry area and the effective area of the choked

main nozzle. Currently, most thrust reversing nozzles are

designed experimentally. This dissertation

describes computational procedures developed for the

analysis of thrust reversing and thrust vectoring nozzles.

If. Nature of Flow Field

There are many types of tw_dimensional nozzles under

investigation. The most common of these are convergent

divergent (CD) nozzles, wedge nozzles, and single expansion

ramp nozzles (SERN). This investigation deals with thrust

reversing and thrust vectoring of two-dimensional convergent



divergent nozzles (2DCD).

A typical 2DCD nozzle with thrust reversing and thrust

vectoring is depicted in Figure i.i. The gas enters the

nozzle subsonically and accelerates to transonic speeds as

it enters one of the three exit ports. The gas then leaves

the nozzle in a supersonic jet which interacts with the

ambient flow. Furthermore, there is often a separation

bubble located on the forward wall of the reverser ports

near the sharp corners.

Within two-dimensional nozzles the flow is confined by

the nozzle sidewalls. There are three-dimensional affects,

due primarily to the boundary layers on the nozzle

sidewalls, but these can generally be neglected when the

nozzle is of high aspect ratio. Once the flow exits the

nozzle, however, it is no longer confined in the lateral

direction and the resulting expansion can significantly

affect the flow within the jet. These three-dimensional

effects are small near the nozzle exit but will become more

significant as the distance from the exit increases.

The principal concern of this investigation is the flow

within the nozzle. However, for many nozzle geometries the

flow at the exit plane is subsonic and the nozzle internal

flow is dependent on the external flow.

external flow field must be calculated.

flow is assumed to be two-dimensional.

In these cases the

For all cases the

This is a good
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assumption for the internal flow and external flow near the

nozzle exit. This assumption, however, will cause

inaccuracies in the external flow far from the nozzle.

Since the results near the nozzle exit are fairly accurate

the two-dimensional assumption is believed to be acceptable

for modelling the effect of external flow on the internal

flow.

Since the flow is transonic and contains boundary layer

separation the effects of both compressibility and

viscosity must be included in the mathematical model. For

this reason the two-dimensional compressible Navier-Stokes

equations are solved. These equations are given in Chapter

2, Section I.

III. Related Research

There have been many experimental studies of 2DCD

nozzles with thrust reversing and thrust vectoring. Most

are concerned with gross performance parameters such

as discharge coefficient and thrust. Two examples are the

work of Re and Leavitt (Reference I) and Carson, Capone, and

Mason (Reference 2). Re and Leavitt studied the static

internal performance of fully deployed thrust reversing

nozzles, as well as non-reversing nozzles. Carson, Capone,

and Mason studied the aeropropulsive characteristics of

partially and fully deployed thrust reversing nozzles



including one partially deployed nozzle with thrust

vectoring.

More information concerning the flow field within a

thrust reversing nozzle is obtained from the measurements of

Putnam and Strong (Reference 3). They measured static

pressures along the sidewall, the blocker, and the flap

(including the forward wall of the reverser port) of a fully

deployed thrust reversing nozzle. The measurements were

made with an external ambient Mach number of zero for a

range of nozzle pressure ratios, from two to eight.

Several computer programs have been written to solve

the Navier-Stokes equations for flow within conventional

nozzle configurations. Cline (Reference 4) developed a

computer program, VNAP, which solved the two-dimensional or

axisymmetric Navier-Stokes equations using the 1969

MacCormack explicit finite difference method. This program

divides the mesh into two zones so that the mixing of two

streams can be calculated. Unfortunately, one set of mesh

lines must always remain vertical, thus limiting the amount

of geometric turning which may be calculated. VNAP is not

applicable to thrust reversing nozzles since such nozzles

invariably have large turning angles.

Peery and Forester (Reference 16) developed a finite

volume computer program which also used the 1969 MacCormack

explicit method. This program utilizes three zones and a
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generalized nonorthogonal mesh to calculate the mixing of

three streams. While this code could, in principle, be

applied to thrust reverser flow fields, no attempt has been

made to do so.

Both of the above computer programs solve the Navier-

Stokes equations using an explicit time marching method.

Explicit methods are limited by stability to very small time

steps which are proportional to the smallest mesh spacing

used. For viscous flow problems the mesh must be refined

near the wall to resolve the boundary layer profile. As a

result, explicit methods become very inefficient for viscous

problems because tens of thousands of time steps are

required to obtain steady state solutions. Recently,

implicit methods have been developed which overcome this

time step limitation.

Goldberg, Gorski, and Chakravarthy (Reference 5) have

developed a computer program for axisymmetric afterbody

flows. This program utilizes a new implicit method which is

similar to the method presented in this dissertation. The

program uses an implicit upwind method, with line Gauss

Seidel relaxation, to solve the Navier-Stokes equations on

a single zone mesh. Since this program does not have

multiple zone capability it would have limited application

to thrust reversing nozzles.

No previous investigators have attempted to solve the



Navier-Stokes equations for flow with a thrust reversing

nozzle.

IV. Contributions of this Research

A typical thrust reverser flow is very demanding of a

numerical method. Thrust reverser flows, by nature, involve

very large turning angles (greater than 90 degrees) and

rapid expansions. Also, since the thrust reverser is a

secondary configuration, thrust reversers often contain

sharp corners where two sections of the baseline forward

thrust nozzle wall join. Near these sharp corners the rapid

expansion (with pressure ratios up to five) and large

turning angles lead to numerical difficulties comparable to

(or worse than) those encountered while capturing strong

shock waves. The contributions of this research are

identifying and overcoming these difficulties.

For reasons given in the prev ious section, it was

decided at the start of this investigation that an implicit

method was required if the resulting program was to be

efficient. In theory implicit methods have no time step

restrictions. However, impl icit methods require the

approximate solution of a very large system of linear

algebraic equations. Conventional implicit methods

approximately factor the coefficient matrix for this system

into the product of two or more simpler matrices whose
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systems may be efficiently solved using direct methods.

This approximate factorization leads to an error which is

small for most flows but significant for thrust reverser

flows. Our attempts to use various approximate

factorizations all led to unacceptable time step

restrictions. The first contribution of this research is

identifying the approximate factorization as the cause of

this time step restriction. This problem was overcome by

solving the system iteratively using line Gauss-Seidel

relaxation.

The next contribution concerns adapting the solution

procedure to the complex solution domain found in thrust

reversing nozzles. Efficient implementation of the line

Gauss-Seidel relaxation requires computationally simple

meshes (meshes that may be mapped into a rectangular

domain). Unfortunately, a single simple mesh cannot easily

be generated for thrust reverser flow fields like that in

Figure I.i. The solution is to break the flow field into as

many as four zones, each of which is descretized by a simple

mesh. With a zonal approach such as this, care must be

taken to insure that the solution procedure is consistent

across zonal boundaries. This author believes that this is

the first time a zonal procedure has been utilized with a

Gauss-Seidel implic'it method.



V. Outline of this Research

The goal of this research effort was to develop a

computer program to calculate the viscous compressible flow

through a two-dimensional convergent-divergent thrust

reversing and thrust vectoring nozzle like that shown in

Figure I.i. This requires the solution of the compressible

Navier-Stokes equations which are presented in integral

form in Chapter 2, Section I. These equations are modified

for time varying meshes in Section II so that the transient

flows due to the nozzle reconfiguration may be studied.

Section III presents the algebraic eddy viscosity model used

to model turbulent flows.

The solution of the Navier-Stokes equations requires

considerable computer time and an inefficient solution

procedure may result in such long run times that its use is

impractical. For this reason an implicit method was chosen

over explicit methods. Chapter 3 presents the solution

procedure used.

Implicit methods generally require that the mesh be

such that it can be mapped into a rectangular domain.

Unfortunately, it is very difficult to generate one such

mesh for the entire flow field in a thrust reversing nozzle

(Figure i.i). The alternative is to divide the flow field

into zones for which simple meshes can be generated. The

solution procedure is applied to each mesh individually and
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the zonal solutions are coupled at the zonal interfaces.

The overall mesh topology and the mesh generation procedure

for each zone are described in Section II of Chapter 3.

Section III through V of Chapter 3 present the implicit

finite volume method used in the interior of the flow field.

Sections VI and VII discuss the treatment of the boundary

conditions. Section VIII of Chapter 3 discusses the

solution of the large system of linear algebraic equations

resulting from the implicit finite volume method. This is

one area where this work differs significantly from most

previous research. Most previous investigations used

approximate factorization to solve this large system of

algebraic equations. In Section VIII of Chapter 3, it is

shown that the standard approximate factorization method

performs poorly for the thrust reversing nozzle flows. As a

result, the linear system of equations is solved using a

1 ine Gauss-Seidel relaxation method which is shown to

perform dramatically better than the standard approximate

factorization.

In Section IX of Chapter 3, the accuracy and stability

of the method is analyzed for the model equation. When

explicit, it is shown to be second-order accurate. When

fully implicit it is shown to be first-order accurate in

time, second-order accurate in space, and unconditionally

stable.
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In Chapter 4 , the results are presented for five

nozzle test cases. In Section I the results for a fully

deployed nozzle are presented and compared with the

experimental results of Re and Leavitt (Reference i) and

Putnam and Strong (Reference 3). The calculated discharge

coefficient compares very well with the experimental results

with the largest error being four percent. The calculated

pressure field also compares well with the experimental

results, except near the forward wall of the reverser port

where the pressure is overestimated. This discrepancy

causes the amount of reverse thrust to be underestimated by

nearly 15 percent of the ideal thrust when the calculation

is second order accurate. Numerical dissipation, the

turbulence model, and three dimensional effects are all

believed to contribute to this discrepancy.

In Sections II and III of Chapter 4, results are

presented for a 50 percent deployed nozzle with both 0° and

15 ° of vectoring. Results are compared with the

experimental data of Carson, Capone and Mason (Reference 2).

In both cases a coarse mesh was used and the resulting

numerical dissipation led to an underestimation of the

discharge coefficient. Both calculations were initially

first-order accurate which resulted in errors of 21 percent

in the discharge coefficient. The unvectored case was then

run second-order accurate and the error was reduced to seven
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percent. In both cases, the normalized thrust compares

surprisingly well with experimental data.

Section IV presents the results for a transient change

in thrust vectoring angle and Section V the results for a

transient change in thrust reverser deployment. No

experimental data is available for these cases, but the

results look qualitatively correct.
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CHAPTER 2

Mathematical Model

I. Navier-Stokes Equation

The two-dimensional Navier-Stokes equations are a set

L

of four coupled nonlinear partial differential equations

that model the flow of viscous, compressible heat-conducting

fluids. These equations are derived by application of the

principles of conservation of mass, momentum, and energy.

The equations can be written in integral form,

V S (2 .i)

where V is an arbitrary volume, S is the surface surrounding

V, and n is the unit vector outward normal to S. Also

= F ix + G [y (2.2)

where
m

P

= pu

pv

E. (2.3 a)
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S

B

pu

pu 2 + P + T
xx

puv + T
xy

(E + P + T
. XX

m

pv

pvu + ry x

2
pv + P + T

YY

)U + T V +
xy qx

, and

(2.3 b)

u + (E + P + ryy)V + qy (2.3 c)
m

The variables p, u, v, P, and E are defined below.

p- density

u - component of velocity in x-coordinate direction

v - component of velocity in y-coordinate direction

P - pressure

E - volume specific total energy

The volume specific total energy, E, is related to the mass

specific internal energy e, the density p, and the velocity

by the following equation.

E = p[e + _.5(u 2 + v2)] (2.4)

The pressure is related to the density and specific internal

energy by the equations of state,

P = P(p,e) , (2.5)

which is taken to be the ideal gas law.

P = P( 7 -l)e (2.6)

The gas is also assumed to be calorically perfect so that

specific internal energy is proportional to the temperature,
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T, with the constant of proportionality being the specific

heat at constant volume.

e = CvT (2.7)

The specific heat at constant volume, c v, is assumed to be a

constant equal to 4290.0 ft2/s2°R, and the ratio of specific

heats, 7, is assumed to be a constant equal to 1.4.

To facilitate the development of the solution

procedure, the contributions to the fluxes from the inviscid

terms , F
I'

separately.

and the diffusion terms, FD, are considered

F = FI + F D

G = GI + G D

where

F I =

D w

pu

pu 2 + P

puv

(E+P)u

(2.8 a)

I v1pvu

pv 2 + P

(E+P)v

(2.8 b)

F D = Txx

rx y

rxxU + rxyV + qx

(2.9 a)

G D =
r
yx

ryy

ryxU + ryyV + qy.

(2.9 b)

The variables Txx, Txy, Tyx, and %y are viscous stress
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terms which are defined in terms of the derivatives of the

velocity components.

au
TXX : -2 _ ax _v.v (2.10 a)

av _V.9 (2.10 b)
Tyy = -2;_ ay

= %u av
rxy Zyx : - ÷ (2.10 c)

V.V : a___u+ a__v (2.10 d)
ax a¥

The variables qx and qy are heat flux terms which are given

in terms of derivatives of temperature.

qx - k aT= a--x (2.11 a)

qy = - k aya--TT (2.11 b)

The viscosity coefficients,k and ;_, are related through

the bulk viscosity, K.

2
K = _;_ + _ (2.12)

The bulk viscosity is negligible except in the study of the

structure of shock waves so

_ 2
3 ;A (2.13)

The coefficient of viscosity, ;A , is related to the

temperature by Sutherland's empirical formula for air,

;_ _ (_)3/2 T.+ 198.6), (2.14);_. (T + 198.6

where the temperature is expressed in degrees Rankine and

;_o is the reference viscosity at the reference temperature,

T . The coefficient of thermal conductivity, k, is obtained
O

from the expression for the Prandtl number,

Pr = Cp;_ (2.15)
k

where Pr is assumed to be a constant equal to 0.72 for
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laminar flow.

II. Modified Form for Moving Mesh

For problems with moving meshes it is convenient to use

a modified form of these equations. By the Reynolds

Transport Theorem the first term in equation 2.1 is expanded

as follows.

u dV = T6dv

V V

+ /U Vsurface .nds

S (2.16)

Substituting this into the integral form of the Navier-

Stokes equations

af_ t dV +

V

(equation 2.1) gives

P + U Vsurface).n ds =

S (2.17)

where Vsurface is the velocity of the surface in the

direction of the unit outer normal, n. Defining a moving

mesh flux function,

PM = _ + U Vsurface (2.18)

gives

8/_-_ dV + /PM.n ds = 0

V S (2.19)
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III. Turbulence Model

For turbulent flow calculations the mass-weighted

Reynold's averaged Navier-Stokes equations are used

(Reference 6). These are the standard equations obtained by

writing the variables in the Navier-Stokes as the sum of a

time averaged quantity and a fluctuating quantity. The

resulting equations are then averaged and the Boussinesq

approximation is applied to the resulting Reynolds stresses.

The result is a set of equations identical in form to the

equations in section I except that the viscosity and heat

conduction coefficients become the sum of their laminar

values with new turbulent coefficients.

= _i + Mt

k = kI + kt

Here _t is called the eddy viscosity and k t is called the

turbulent conductivity.

For wall boundary layers, the eddy viscosity is

obtained from an algebraic two-layer eddy viscosity model

developed by Baldwin and Lomax (Reference 7). In the

model, the eddy viscosity, _t' is given by

I ( _t) inner Y' < Y' crossover
_t ! ( _t ) outer Y' > Y' crossover

(2.20)

where y' is the normal distance from the wall and
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Y'crossover is the smallest value of y' for which ( ;_t)inner

= ( ;At)outer.

For the inner layer the Prandtl-Van Driest formulation

is used.

( _t )inner = pI21_I (2.21)

In this equation p is the density, 1 is a length scale, and

is the vorticity.

au av
_- ay -_ (2.22)

The length scale is give by

1 = k y' [i - exp(-y+/A+)] (2.23)

+

where y is given in terms of density, shear stress, and

viscosity at the wall.

+ _p wTw y,
Y #w (2.24)

In the outer region the eddy viscosity is calculated

with the following formula.

( #t)outer = K Ccp p FWAKE FKLEB(Y' ) (2.25)

Here K is the Clauser constant and FWAKE is obtained from

2
FWAKE = MIN{YMAx FMAX' CWK YMAX UDIFF/FMAx}" (2.26)

The terms YMAX and FMA x are obtained from

F(y') = y' I_I [i - exp(-y+/A +) ] . (2.27)

where FMA x is the maximum value of F(y') in the boundary

layer profile and YMAX is the value of y' at which FMA x

occurs. The term UDIFF2 is simply the square of the maximum

2 for boundary layer flows. Finally,total velocity, UMAX,

the function FKLEB(Y') is the Klebanoff intermittency
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factor.

FKLEB(Y') = [i + 5.5 (
CKLEB Y' 6]-1)

YMAX (2.28)

The constants used in the above formulas are those

recommended by Baldwin and Lomax (Reference 7).

A + -- 26

CCp = 1.6

CKLEB = 0.3

k =0.4

K = 0.0168

The above turbulence model is implemented for each of

the interior walls of the nozzle as well as the exterior

nozzle surfaces. For application to an interior wall the

testing for UMA x and FMA x occurs along a column of cells as

shown in Figure 2.1. This testing occurs from the wall to

the point half way to the opposite wall (half way in terms

of number of cells). The spacial derivatives of u and v in

the expression for the vorticity are calculated using a

numerical transformation described completely in the

discussion of the diffusion terms in Chapter 3, Section IV.

The Baldwin Lomax model is also used for the jets

emanating from each nozzle exit port. For the jets the

outer formulation is used with
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and

2FWAKE = CwKUMAx/ MAX (2.29 a)

FKLEB = 1 . (2.29 b)

Equations 2.29 are utilized with equation 2.25 to obtain the

eddy viscosities for the jet at each station downstream of

the nozzle exit.

In the external flow the results from the jet

turbulence model must somehow be blended with the results

from the wall turbulence model. This is done by giving each

model a domain which it influences as shown in Figure 2.2.

At the nozzle exit the jet model is used for only those

cells adjacent to interior cells. For the rest of the cells

in this column the eddy viscosities are obtained from the

wall turbulence model. At each successive column of cells

outward from the nozzle the domain for the jet model widens

by two cells (one on either side of the jet). After six

columns the spreading of the jet model increases by four

cells per column. The wall turbulence model dominates near

the nozzle (except at the nozzle exits) and the jet model

dominates far from the nozzle.

Once the eddy viscosity is known turbulent conductivity

is obtained from

kt : Mt Cp/Prt (2.30)
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where Pr t is the turbulent Prandtl number. As recommended by

Baldwin and Lomax (Reference 7) the turbulent Prandtl number

is taken as 0.9.
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Figure 2.1 Domains of Influence for Each Wall Turbulence

Model.
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CHAPTER 3

SOLUTION PROCEDURE

I. Preliminary Comments

This chapter describes the numerical procedure

developed for solving the Navier-Stokes equations for thrust

reversing and thrust vectoring nozzle flows. Thrust

reversing nozzle flows provide difficulties not encountered

with more conventional nozzles. Typically thrust reversing

nozzles have sharp corners resulting from the separating of

the smoothly faired wal 1 s present in the cruise

configuration. Near sharp corners the mesh must be refined

in two nearly perpendicular directions. This leads to

unacceptable time step restrictions for conventional

implicit finite difference methods. The numerical

procedures presented in this chapter were developed to

overcome these difficulties.

Section II describes the mesh topology and mesh

generation procedure. The mesh is broken into as many as

four zones to facilitate the application of boundary

conditions and make efficient use of computer memory.
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Section III evaluates the time derivative using a

predictor-corrector method and presents the basic finite

volume equations. These equations require the evaluation of

the fluxes through each of the four faces surrounding an

arbitrary quadrilateral finite volume. Sections IV through

VI consider the approximate evaluation of these fluxes.

Section VII presents the application of the boundary

conditions. Section VIII discusses the solution of the

large system of linear algebraic equations that result from

the implicit difference method. It is shown that the

popular approximate factorization method yields unacceptable

results for thrust reverser flows and a line relaxation

procedure is adopted. Finally, Section IX provides an

accuracy and stability analysis for the solution procedure

applied to a linear scaler wave equation.

II. Discretization of the Flow Field

The flow field under consideration is discretized into

a large number of finite volume cells. In two dimensions

these finite volumes are arbitrary quadrilaterals which are

described completely by the x,y-coordinates of their four

corner points. Within the computer program, the mean value

of the conservative variables, U, within a cell and the

corner point coordinates are stored in terms of indices i

and j. Cell i,j, containing Ui, j, is defined by the x,y-
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coordinates with indices i,j, i+l,j, i,j+l, and i+l,j+l.

On a larger scale, the mesh for the thrust reversing

and thrust vectoring nozzle program is divided into as many

as four zones--one zone for each of three possible internal

flow ports and a zone for the exterior flow as shown in

Figure 3.1. The mesh is generated such that mesh lines are

continuous across the zonal interfaces. A single set of i

and j indices are used to specify cell locations within all

the internal zones as shown in Figure 3.1 b stacked on top

of one another. Each must have the same number of columns,

given by the i index. The mesh cell locations in the

external flow zone are specified by a separate set of

indices, ie and je. The outer zone mesh lines must be

continuous with the internal zone, but the external zone is

not required to have the same number of columns as the

internal zones.

The mesh for each interior zone is generated from cell

coordinate data input along the lower and upper boundaries

of the zone and, optionally, also along an arbitrary

dividing line extending from the inflow boundary to the

outflow boundary. If the zone has a dividing line, the line

divides the zone into two regions for mesh generation

purposes. Otherwise the zone is a single region. An

example region is shown in Figure 3.2. The mesh is

generated for this region using a simple algebraic process:
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i) all corner points for a given i-index within a region

lie along a line segment connecting the points input for

that i-index on the upper and lower boundaries, and

2) the position of an i,j corner point along the line

segment is given by the relation

11 I- (3.1)L LI

where i, L, if, and LI are defined in Figure 3.2.

The mesh for the external zone is generated somewhat

differently. The external zone can also be broken into two

regions as with an internal zone. However, the dividing

line for the exterior mesh becomes an ie=constant mesh

line, whereas the dividing line for the interior zone

becomes a j=constant mesh line. Also, for the interior

zones, corner point coordinates are given along only three

of the boundaries of a region where, for the exterior zone,

corner point coordinates are given for all four boundaries

of a region. In this case the mesh is generated for each

region using a modified algebraic process:

i) all corner points for a given je index within a

region lie along a line segment connecting the points input

for that je index along the inner and outer boundaries of

the region, and

2) the position of an ie,je corner point along the line

segment is given by the relation
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1 (i - a IL A lu (3.2)

where a is the arclength along the inner boundary of the

region to point je, A is the total arclength of the inner

boundary of the region, and i, L, IL, LL, lu, and Lu are all

defined in Figure 3.3.

III. Approximation of the Time Derivative

The Navier-Stokes equations, when applied to a finite

volume cell, become

dU.
1,j) Vol . + D. (P-S) + D. (P.S)= 0 (3.3)

( d----t-- l,j 1 3

where

Di (P" S) = P'Si+I/2,j - P'Si-I/2,j (3.4 a)

D. (P.S) = P.S. - P.S. (3.4 b)
3 l,j+i/2 i,j-i/2

and the surface vectors are always oriented in the positive

i or j directions as shown in Figure 3.4. If the mesh is

moving the equation is the same except that P is replaced by

PM as defined in Chapter 2, Section II.

The time derivative is approximated with MacCormack's

predictor-corrector method (Reference 8).

Predictor

Un+l = un At ) [ D i (P.S) p + D (P.S) p]
i,j 1,j - (Voli, j 3

(3.5 a)
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Corrector

n un+l
U n+l = 0.5 { U i j +i,j , i,j

(Voli,jAt ) [D i (_._)c + D.3 (_._)c] }

Note the superscripts p and c on the flux terms.

(3.5 b)

These

indicate that the fluxes may be evaluated differently on the

predictor and corrector steps. In fact, the way in which

the fluxes are evaluated in terms of the U determines the
1,j

type of method that is used.

IV. Explicit Contribution

Equations 3.5 do not specify how the fluxes are to be

evaluated. If the values of the conservative variables were

known at the surface of each cell (e.g. at i+i/2), the flux

could be obtained simply from equations (2.2) and (2.3).

Unfortunately, only the mean value of the solution within

each cell is known. The flux through a surface must

therefore be approximated from the mean values of the

solution within neighboring cells. In general the flux is

evaluated using both the solution at the current time level,

nc, and the solution being sought at the new time level, nn.

This section considers the explicit contribution - the

contribution from the current time level.

The inviscid terms and diffusion terms contribute

substantially different characteristics to the Navier-Stokes
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equations. In the limit as the Reynolds number goes to

infinity the inviscid terms dominate and the equations are

hyperbolic in time. In this case information concerning a

disturbance in the flow field is propagated at a finite rate

in a manner described by the theory of characteristics. It

is therefore appropriate to incorporate the theory of

characteristics into the approximation of the inviscid flux

through a surface. In the limit as the Reynolds number goes

to zero the diffusion terms dominate and the equations are

parabolic in time. The approximation of the surface flux

due to the diffusion terms should reflect the parabolic

nature of these terms. This section will consider the

treatment of the inviscid terms first followed by the

treatment of the diffusion terms.

Inviscid Surface Fluxes

The inviscid flux is evaluated using a second-order

flux vector splitting which is based, ultimately, on the

1969 MacCormack method. Three approximations to the surface

flux are presented here; the 1969 MacCormack method, its

extension to first-order flux vector splitting, and its

extension to second-order flux vector splitting.

1969 MacCormack Method

In the 1969 MacCormack explicit method (Reference 9)

the fluxes are evaluated at the latest known time level

using, alternately, the value of P on either side of the
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surface. For the i+i/2 and j+i/2 surfaces (Figure 3.4)

(P'S)i+I/2 = _nc .-ii,j Si+i/2 (3.6 a)

(P'S)j+I/2 = _nc ._ji,jj +1/2 (3.6 b)

where nc is the current time level, ii is an index which is

either i or i+l, and jj is an index which is either j or

j+l. These indices run through a cycle every four steps as

shown in table 3.1.

For a subsonic flow, where information can travel in

either direction, the 1969 MacCormack method violates the

physical domain of dependence on the predictor and corrector

steps individually, but satisfies the physical domain of

dependence collectively.

n ii jj np nn

Predictor i+l j+l n n+l1
Corrector i j n+l n+l

Predictor i j+l n n+l
2

Corrector i+l j n+l n+l

Predictor i+l j n n+l3
Corrector i j+l n+l n+l

4 Predictor i j n n+l
Corrector i+l j+l n+l n+l

Table 3.1 Cycle of Indicies
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First-Order Flux Vector Splitting

In general the surface flux should be some nonlinear

function of the solution on either side of the surface. To

determine an appropriate approximate function it is

instructive to look at the eigensystem of the Jacobian

matrix. First of all, the flux vector is homogeneous of

degree one in the elements of U.

(_._) = [ a(P.S)] -- AU (3.7)
au

Th'e Jacobian can be diagonalized by a similarity

transformation

A = T-IR-Is-IA S R T 121 (3.8)

where S,R, and T are matrices given in appendix A, A is a

diagonal matrix containing the eigenvalues of the Jacobian

[uU w

A = u'+c (3.9)

0 u' C

matrix

and u' is the component of velocity in the S direction.

The eigenvalues of the Jacobian matrix are the speed at

which information is propogated in the S direction and a

negative sign indicates propagation of information in the

direction opposite to S. Figure 3.5 illustrates the

propagation of information in the S direction for both
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subsonic and supersonic flows. The arrows are the local

time-dependent characteristics whose slope are given by the

eigenvalues of A. Following Steger and Warming (Reference

10) the Jacobian matrix is taken as the sum of two matrices,

one containing the positive eigenvalues and the other the

negative eigenvalues.

A+ = T-IR-Is -I A+ S R T

A- = T-IR-Is -I A- S R T

+ + + +
A+ = diag ( _1' XI' k3' _4)

- - - !-3u_ag ( '_'i 'kl _-_' ' • ''4 "

(3.10 a)

(3.10 b)

(3.11 a)

(3.11 b)

_ + , _ , (3.11c dl_+
k 2 ' _ 2

The flux is then evaluated approximately by multiplying the

A +matrix of positive eigenvalues, , by the solution to the

left of the face, and the matrix of negative eigenvalues,

A , by the solution to the right of the face.

= A + U nc + A- U nc(P'S) i+I/2 l,j +l,j

A +The Jacobians, and A , are calculated using U nc..
llrj

nc and ii go through the cycle in table 3.1.

(3.12)

where

FS n - nc Unc
(P'S)i+I/2 = (A+) ncii,j Oi,j + (A)ii,j i+l,j

(p.s) FS = (A+) nc........U nc + (A-) nc un c
j+i/2 1,33 I, 3 1,33 1,j+l

(3.13 a)

(3.13 b)
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Note that both the positive and negative Jacobians are

calculated alternately using the values of the solution on

either side of the surface (i and i+l for the i+i/2 surface,

or j and j+l for the j+i/2 surface). This is in contrast to

the flux vector splitting of Steger and Warming, (Reference

10), where A+ is evaluated using U. and A- isi+i/2 l,j I+1/2

evaluated using Ui+l, j. As shown in Figure 3.6, the Steger

and Warming splitting results in five characteristics

converging on a shock wave and only three characteristics

converging on a sonic point. Thus the flux at a shock wave

is overspecified and the flux at a sonic point is

underspecified. Calculating both Jacobians using the same

value of U eliminates this problem.

An additional advantage of this approach is that it

allows a convenient extension of the 1969 MacCormack scheme

to flux splitting. The 1969 MacCormack fluxes through the

i+I/2 face, equations 3.6, may be rewritten as follows.

nc nc nc
1969 = _nc ._ = [(A +) (A-) ]O.

ii=i: (P-S)i+i/2 I, 3 i+i/2 i,j + i,j i, 3

(3.14 a)

- - 1969 -nc ._
ii=i+l: (P.S)i+i/2 = P i+l,j i+i/2

nc

= [(A+) i+l,j + (A)he i+l,j
]U nc (3.14 b)

i+l,j

Comparing these equations to equations 3.13 reveal that

the fluxes for first-order flux vector splitting may be

written as the 1969 MacCormack fluxes plus a second-order
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smoothing term.

ii=l (_._) FS
i+i/2

FS
ii=i+l (P'S)i+I/2

= (_._)1969
i+i/2

= (_._)1969
i+i/2
n+l un+l- (A+)i+l,j [ i+l,j

+ (A-) n n _ Uni,j[Ui+l,j 1,j ]
(13.15 a)

n+l
- Ui, _]3 (13.15 b)

Clearly, the first-order flux spl itting is more

dissipative than the 1969 MacCormack method. As a result

the first-order flux splitting is considerably more robust

than the 1969 MacCormack method, but less accurate. The

first-order accurate method has other numerical advantages

when used in an implicit method. These will be discussed

later.

Second-Order Flux Vector Splitting

The accuracy of the flux split method can be improved

to second-order by using better approximations for U at the

surface. As shown in Figure 3.7, first-order flux vector

splitting is equivalent to a zeroth-order extrapolation of

the solution, U, from the neighboring cell centers to the

surface. Second-order accuracy is obtained by using a

linear extrapolation instead (for simplicity the Jacobians

are evaluated as they were for the first-order flux

splitting).

FS2
(P'S) i+i/2 = (A+) nc - - . (U+)11,j (U)i+i/2 + (A)ncll,j i+i/2 (3.16 a)
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- ncFS2 = A+ nc (U) + (A-)
(P'S)j+I/2 ( )i,3j 3+1/2 i,jj

where

(U+) j+i/2(3.16 b)

- nc =Unc + ¢[+ ( nc _Unc(O)i+i/2 i, 3 1/2 Ui,j i-l,j ) (3.17 a)
nc = Unc + nc nc

(U+)i+i/2 i+l,j + ¢i+i/2 (Ui+l,j - Ui+2,j) (3.17 b)

As with the first-order flux vector spl itting this is

obtained as terms that are added onto the 1969 MacCormack

method.

- - FS2 - - 1969 - nc nc

ii=i: (P S)i+i/2 = (P S) i+i/2 + (A) i,j[Ui+l,j

nc nc _ Unc
+ ¢_+i/2 (A+) i,3 [Ui,j i-l,j ]

+ nc nc _Unc
+ ¢i+i/2 (A-) i,j [Oi+l,j i+2,3 ]

_ U nc
i,j ]

(3.18 a)

- - FS2 - -
ii=i+l: (P S)i+l/2 (P S) 1969= i+i/2

nc nc
- (A+) i+l,j [Ui+l,j

nc
+ ¢_+i/2 (A+) i+l,j

+ - nc

+ ¢i+1/2(A ) i+l,j

_ U nc
i,j ]

nc[unc - u ]
i ,j i-i,3

[O nc _ U nc
i+l,j 1+2,3 ]

(3.18 b)

For a mesh with constant spacing
+

_i+i/2 and ¢i+i/2

are both 0.5. For a mesh without constant spacing there is

a choice. The extrapolation can be carried out in physical

(x,y) space where the extrapolation would depend upon the

stretching, or it may be carried out in computational (i,])

space where the values of ¢I+1/2

+

and ¢i+i/2
remain 0.5.

The latter case is much simpler and is used here.

Use of the second-order method presented above will



39

result in oscillations near shock waves, rapid expansions,

and mesh discontinuities. These oscillations lead to

instabilities near the sharp corner of the thrust reversing

nozzle when large time steps are taken. A commonly used

method for eliminating these instabilities is flux limiting.

with flux limiting the magnitude of the second-order

contribution is reduced in regions of large gradients. The

flux limiter used here reduces the coefficients #_+i/2 and

+

#i+i/2 by a term proportional to the first and second

differences of pressure

m

#I+i/2 -- max(0.0,0.5 - CLIM ) (3.19 a)

+

#I+i/2 = max(0.0,0.5 - CLIM +) (3.19 b)

where

• +P { {P -P{{Pi+l - 2Px i-I i+l i
CLIM = +

• + P i ) (P + Pi )(Pi+l + 2PI i- i+l (3.20 a)

IPi+2 - 2Pi+ 1 + Pi{ IPi+l - Pi{
CLIM + = +

(Pi+2 + 2Pi+l + Pi ) (Pi+l + Pi ) (3.20 b)

This form of flux limiting is equivalent to adding a fourth-

order smoothing term to the second-order flux split method.

Diffusion Surface Fluxes

The viscous stress and heat conduction terms for a cell

surface, equations 2.9, require the evaluation of spacial

derivatives of velocity and temperature. These derivatives

may be obtained from a generalized transformation.
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fol n
H ax

(3..21)

au ax ay au au

Here _and _ are the coordinate directions for a non-

orthogonal coordinate system with _ running in the i-

direction and _ running in the j-direction. The components

of J_ can easlly be evaluated numerically.

surface,

ax

_ - fl.25(Xi+l,j+l-X

ax - x - x
_17 i+l,j+l

ay _

aY _
a_

Also,

au

= Ui+l,j - ui,j

au
a_ - 0.25 (u

i-l,j+l+Xi+l,j-Xi-l,j)

i+l,j

0"25(Yi+l,j+l-Yi_l,j+l+Yi+l,j-Yi-l,j

Yi+l,j+l - Yi+l,j

i+l,j+l - Ui+l,j-i + ui,j+l - ui,j-i

For the i+i/2

(3.23 a)

(3.23 b)

(3.23 c)

(3.23 d)

(3.24 a)

(3.24 b)

The spacial derivatives of v and T are evaluated in the same

manner.

V. Implicit Contribution

All of the methods presented so far are explicit and
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are limited to small time steps by the following numerical

stability criterion:
1

At <

-- .[__. + v/_ + c
Ax Ay

(3.25)

When solving the Navier-Stokes equations it is necessary to

have a very fine mesh near walls so that the velocity

gradients within the boundary layer are adequately resolved.

Unfortunately, this required that Ax or AY, and therefore

At, be very small. In this case the equations are said to be

stiff and thousands of time steps are required to solve

interesting problems.

The difficulty with explicit schemes for Navier-Stokes

solutions arises because explicit schemes require that the

time step be smaller than the smallest time scale in the

problem. Look at the mesh near a wall where Ay is the

1

direction normal to the wall. Since _-_ is much larger than

1
A--x the equation for the time step becomes

At < AY (3.26)
- ivl ÷ c

Physically this means that the time step must be smaller

than the time required for an acoustic wave to cross the

width of the narrowist cell. This time step is unreasonably

small for two reasons:

i) The mesh was refined to this degree to resolve

velocity gradients within the boundary layer, not

accoustical waves.
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2) Any inviscid effects this deep in the boundary

layer should be completely overwhelmed by the viscous

stresses. The term that limits the stability of the method

is not even important physically.

The use of implicit methods can eliminate this time step

restriction.

The basic idea of implicit methods is to evaluate the

fluxes using not only the latest known value of the solution

as with the explicit methods, but also the unknown solution

currently being sought. In particular, use a weighted

average of the fluxes at these two time levels.

([_" S) i+I/2 = (l-fi+i/2
-- nc

) (P.S) i+i/2
nn

+ fi+i/2 (P" S) i+i/2

(3.27)

Here fi+i/2 is the degree of implicitness which varies from

zero (fully explicit) to one (fully implicit) as a function

of the local CFL number for the surface.

fi+l_2/ = MAX { 0,1-0.5 } (3 28)CFL

As with the explicit methods the flux terms are still

evaluated differently between the predictor and corrector

steps.

First-0rder Flux Splitting

The fluxes for first-order flux splitting are
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FS
(P-S) i+i/2 = (l_fi+i/2) [(A+)nc nc + (A-)nc Uncii,j Ui,j ii,j i+l,j ]

+f. i+1/2
- nn nn[(A+) nn .Unn + (A) U ]

ii,3 i,j ii,j i+l,j
(3.29 a)

- - FS nc.. - nc Unc(P.S)j+I/2 (l-fj+i/2) [(A+) nc + (A) ]= i,jjUI,3 i,jj i,j+l

- nn .unn+ fj+i/2 [(A+)nn "unn + (A) j+l ]i,j 3 1,9 i,j 3 i,

(3.29 b)

where nc is the current solution, nn is the new solution

being sought, and ii goes through the cycle in table

3.1. Substituting these fluxes into equations 3.5 leads to

a nonlinear algebraic system of equations which must be

solved on each predictor or corrector step. This is

impractical, so the system is linearized. For example, take

the two implicit terms for the i+i/2 surface when ii=i.

_[ (A+) i,jUi,j]
nn.unn . -- (A +)nc.Unc. +

(A+)i,3 1,3 1,3 1,3

inc

6U. + ..

_Ui, _J i ,j "
(3.30 a)

- nn unn - nc Unc _[(A-)i jUi+l j] Inc

(A) l,j i+l,j -- (A) i,j i+l,j + _Ui,j' ' SUI. ,j

_[(A-) i jUi+l, j] Inc

' 6Ui+l, j

()Ui+l, j

= U nn _ U nc
where 6Hi, j i,j 1,j"

(3.30 b)

These flux vectors are not homogeneous of degree one so
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_[ (A+) i,jU ]

i,j _ (A+) i,j
aU

1,j

(3.31)

but the true Jacobian is expensive to calculate so the

following is assumed.

a[(A+) U ]
1,j i,j = (A+) .

1,j
aUi, j (3.32 a)

_[ (A-) i,j Ui+l,j]
= 0

_Ui, j (3.32 b)

Substituting into equation 3.29 gives

(_. _)FS
i+I/2 = [ (A+)nc .Unc. + (A)nc ncii,3 1,3 ii,jUi+l,j ]

+ fi+i/2 [ (A+)ncii,j6Ui,j + (A)nc i i, j6Ui+l, j ]

- nc .UncFS nc .Unc + (A) ]
(P'S)j+I/2 = [(A+)i,j3 1,3 i,j3 1,j+l

nc
+ fj+i/2[(A+)i,jj 6U i j + (A)nc, i,jj 6Ui, j+l

(3.33 a)

] (3.33 b)

Substituting th_se fluxes into equations 3.5 leads to a 4x4

block linear algebraic relationship between

6U in four neighboring cells.

6Ui, j and the

Di,j _Ui+l,j + Bi, j 6Ui,j+ 1 + Ai, j 6Ui,j

+ Ci, j SUi,j-i + El, j 6Ui-l,j = AUi, j
(3.34)

where 6Ui, j is the time difference of Ui, j obtained from the

explicit first order flux split method, and

&t - nc

Di,j = fi+i/2 Voli,j (A)ii,j (3.35 a)
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m •

z,j

S ,

l,j

C ,

z,j

A °

z,j

At (A + )nc
= - fi+i/2 Voli,j ii-l,j

At - nc

= fj+i/2 Voli,j (A)i,jj

At A + nc
= - fj-i/2 Voli,j ( )i,jj-i

= I + At
Voli,j [fi+i/2 (A+) ncii,j

nc

+ fj+i/2 (A+) i,jj

(3.35 b)

(3.35 c)

(3.35 d)

- nc

- fi-i/2 (A)ii-l,j

- f -i/23 (A-)nci,jj_l ] (3.35 e)

This relationship is expressed more compactly as

follows.

FS(6u ) = AU (336)
LI i,j l,j

The subscript I indicates that this is an inviscid

relationship and the superscript FS indicates that it is

first-order flux vector splitting.

When equation 3.36 is applied to each interior cell in

the finite volume mesh it leads to a large linear system of

block algebraic equations. To complete this system a block

algebraic relationship must be provided for each boundary

cell as well. The boundary cell relationships are developed

in Section VlI of this chapter. The algebraic relationships

within this system are grouped so that the equation for the

(i,j) cell is below the equation for the (i,j+l) cell and

above the equation for the (i,j-l) cell. Thus each column

of cells is grouped together with equations for the i+l

column being higher in the grouping than the equation for

the i column, as shown in Figure 3.8.

The coefficient matrix for this system of algebraic
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equations is large, sparse, well structured, and diagonally

dominant. For example, a 50x50 mesh will result in

10,000x10,000 coefficient matrices with only 800,000 non-

zero elements out of 100,000,000 total elements.

Furthermore, the non-zero elements of the coefficient matrix

are all contained within 5 bands of 4x4 block matrices, with

3 of these bands clustered near the main diagonal. The

principle difficulty with implicit methods is solving this

large system of equations efficiently. In this

investigation these systems are solved iteratively using a

Gauss-Seidel line relaxation method. The motivations for

using this method, and the details of this method are

discussed in Section VIII of this chapter.

Second-Order Flux Splitting

The fluxes for the implicit, second-order flux vector

splitting method are obtained from equations 3.33 by

replacing all 6Ui, j by 6Ui+I/2 = 6Ui, j + #_+i/2

(6Ui, j -6Ui_l, j) and SUi+l, j by 6U++I/2 = 6Ui+l, j

+

_i+i/2 (6Ui+l,j- 6Ui+2,j)

FS2 = A + #_ J ) ](P'S)i+i/2 [( )ii,j (Ui,j + +1/2 (Ui,j - Ui-l,

- +

+ (A)ii,j (Ui+l,j + #i+i/2(Ui+l,j - Ui+2,j ))]nc

nc+ fi+i/2 [(A+)ii,j(6Ui,j + # +i/2(6Ui,j - 6Ui-l,j

+ (A-) nc 1ii,j (SUi+I,j + # +i/2(6Ui+l,j- 6Ui+2,j))]

))

(3.37 a)
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FS2 j - U. ))(P'S) j+i/2 = [(A+)i,jj (Ui,j + _ +I/2(UI,j 1,j-i

- +

+ (A)i,jj (Ui,j+l + _j+i/2 (Ui,j+l - Ui,j+2 ))]nc

+ fj+i/2 [(A+)nc (6U +#3 (6U - 6Ui,j 3 i,j +1/2 i,j i,j-i

- +

+ (A)nc . (_U j+l + #3+1/2 (bUi j+li,j3 i,

))

- _ui,j+2)) ]

(3.37 b)

Substituting these fluxes into equations 3.5 yields a 4x4

block linear algebraic relationship between 6U i,j and the 6U

in cells (j+l,j), (i+2,j), (i-l,j), (i-2,j), (i,j+l),

(i,j+2), (i,j-l), and (i,j-2).

D2i,j6Ui+2, j + Di,j6Ui+l, j + B2i,jSUi,j+ 2 + Bi,j6Ui,j+ 1

+ Ai,j6Ui, j + Ci,j6Ui,j+ 1 + C2i,j_U i,3+2 + E i,j6Ui+l,j

+ E2i,j6Oi+2, j = AUi, j (3.38)

where, AUi, j is the time difference of Ui, j obtained from the

explicit second order flux split method, and

At + - n

D2i,j = Voli,j [-fi+i/2 #i+i/2 (A)ii,j] (3.39 a)

At [f (i + + n
Oi,j = Voli,j i+i/2 #i+I/2 ) (A-)ii,j

+ - n

+ fi-i/2 #i-i/2 (A)ii-l,j ]

= At [+f #__I/2(A +)nE2i,j Voli,j i-i/2 i-l,j ]

E =
1,j

B2 • _-"

1,j

At
Voli,j [-fi-i/2 (I + #_' i/2 )(A+)n- ii-l,j

- fl+i/2' #_'+i/2 (A+)nii,j ]

AtVoli,j [-fj+i/2 # +i/2 (A-)nci,jj]

At
Voli j [fj+i/2( 1 +_3+I/2)(A )nc ., 1,33

+ -- nc

+ fj-i/2 #j-i/2 (A) i,jj-i ]

(3.39 b)

(3.39 c)

(3.39 d)

(3.39 e)

(3.39 f)



48

C2
1,j

A .

1,j

Voli,j [+fj-i/2 # -i/2 (A+)nc= . . i,jj_l ] (3.39 g)

AtVoli,j [-fj-i/2 (I + # -1/2 ) (A+)nci,jj-i

- fj+i/2 #j+i/2 (A+)nci,jj] (3.39 h)

= I + At _+i/2 )Voli,j [fi+i/2 (i + ¢ (A+) ncii,j

+ -- nc

- fi-i/2 (i + ¢i_i/2) (A) ii-l,j

+ fi+i/2 (i+ ¢_+i/2 ) (A +)nc1,33

+ - nc

- fj-I/2 (i + ¢j_i/2 ) (A)i,jj_l ] (3.39 i)

This relationship is expressed more compactly as follows.

L IFS2(6Ui,j) = AUi,j (3.40)

The subscript I indicates that this is an inviscid

relationship and the superscript FS2 indicates that it is

second-order flux vector splitting.

The coefficient matrices for this system of algebraic

equations is large, sparse, and well structured as in the

first-order case. The example 50x50 mesh yields

10,000x10,000 coefficient matricies with 1,440,000 nonzero

elements out of 100,000,000 total elements. The nonzero

elements of the coefficient matrices are all contained

within 9 bands of 4x4 block matrices, with 5 of these bands

clustered near the main diagonal. Unlike the coefficient

matrices from the first-order flux split method, these

matrices are not necessarily diagonally dominant. This is

unfortunate because diagonal dominance is a sufficient

condition for convergence of the Gauss Seidel line

relaxation method.
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Diffusion Terms

The implicit contribution to the viscous stress and

heat conduction terms is obtained using a thin-layer

approximation. To obtain the thin-layer approximation the

equations are written in Cartesian coordinates aligned with

the cell face. If _ is the coordinate normal to the surface,

and _ is the cordinate along the surface then the

contribution to the fluxes from the diffusion terms is

_._DIFF :

where

S x - T_ Sy

+

_U t 6V l

o_: = - (k+2F) G_ X 817

q' = -kG_

u' =SxU+SyV = Velocity normal to surface

v' = -SyU+SxV = Velocity tangent to surface

(3.42)

(3.43 a)

(3.43 b)

(3..43 c)

The thin-layer approximation is obtained by neglecting

all derivatives in the _ direction.

:
6v'

af

The thin-layer diffusion fluxes can then be written.

(3.44 a)

(3.44 b)
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_._T .L.

m

i

0

m

0 0 0

Sx-Sy 0

S S 0
y x

0 0 1

u

m m

0 0 0 0

0 (},+2p) 0 0

0 0 _ 0

0 u' (X+2;_) ;_v' k

i ,m

m u

ap
a_
au '

a--C
av '

a_
9_!

_ a__

(3.45)

(3.46)

The first matrix above rotates from the (f,_;) coordinate

-i
system to the (x,y) coordinate system,R . The second is

the matrix of diffusion coefficients, M. The vector on the

right contains a set of non-conservative variables in the

rotated coordinate system, V'. The fluxes may be written in

a more compact notation.

av, - aV
_._T.L.= _ R-I M _-_--fi_t= - R IMR_ I_I (3.47)

If f is in the i-direction we can approximate the derivative

as follows.

av Vi+l j - vij 21_i+I/21
Of Af (V°li, j + Voli+l, j) (Vi+l,J - Vi,])

(3.48)
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Likewise, if _ is in the j-direction

_V _ 21Sj+I/21
_ (V°li, j + Voli,j+ I) (Vi,j+l

- V )
1,3 (3.49)

Substituting into equation 3.47 gives

- L. 21Si+i/212

p-sT+I/2 = _ (Voli+l, j + VOI i j) (R-IMR)i+I/2(Vi+I,j-Vi,j)
' (3.50 a)

21 j+i/212
j+i/2 = - (Vol i j+l + V°li j) (R-IMR)j+I/2 (Vi'j+l-Vi'j)

' ' (3.50 b)

The purpose of the thin-layer approximation is not to

get the complete diffusion terms but to provide a simplified

implicit contribution to the diffusion terms.

_._(DIFF) (Explicit Contribution)
i+i/2 =

21si+i/212

- fi+I/2(Voli+l j + Voli,j) (R-IMR)i+I/2( Vi+l, j- Vi, j)
' (3.51 a)

_._(DIFF) (Explicit Contribution)
j+i/2 =

21Sj+I/212 -i

- fj+i/2(Vol + Vol. .) (R MR)j+1/2( Vi,j+ I- Vi, j

l,j+l I, 3 (3.51 b)

The explicit contribution is the full diffusion terms, w th

no thin layer approximation, as given by equation 2.9, 3.23,

and 3.24.

The above equations may be written in terms of the

change in the conservative variables using the
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transformation matrix, N.

_V = N6U

Then

_._(OIFF)i+i/2 = (Explicit Contribution)

+ (AD+)i+I/2 6Ui, j + (AD-)i+I/2_Ui+I,j

_.:(DIFF)
_j+i/2 = (Explicit Contribution)

+ (AD+)j+I/2 6Hi, j + (AD-)j+I/26Ui,j+ 1

(3.52)

(3.53 a)

(3.53 b)

where

2fi+i/2Jsi+i/212
(AD+)i+I/2 = + (Vol + Vol ) (R-IMR) i+I/2Ni

i, 3 i+l,j (3.54 a)

(AD) i+i/2
2fi+i/2Jsi+i/2 j2

(Voli, j + Voli+l, j)
(R-IMR) i+i/2 N i+l

(3.54 b)

2fj+i/2 ISj+I/2 j2

(AD+)j+I/2 -- + (Voli, j + Voli,j+ I) (R-IMR) j+I/2Nj (3.54 c)

2fj+i/2Jsj+i/2 j2

(AD-)j+I/2 = - (Vol + Vol. ) (R-IMR)j+I/2N
l,j 1,j+l j+l (3.54 d)

The sum of the flux from second-order flux splitting,

equations 3.37, and the flux from the diffusion terms,

equations 3.53, are substituted into equations 3.5. The

result is a block linear relationship of the same form as

that discussed in section V. This relationship may be

written compactly as
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LFS2I (6Ui,j) + LD(6Ui,j) = AUi,j (3.55)

where the explicit diffusion flux is included in AU i,j. The

diffusion operator is expanded to be a block 1 inear

relationship between 6Ui, j and 6U in the four neighboring

cells.

LD(6Ui, j) = D.D _U + B D A.D1,j i+l,j 1,j6Ui,j+l + .6U.1,3 l,j

+ C D
i,j6Ui + E D,j-i _,j_Ui-l,j

(3.56)

where

D D = f At -
1,j i+i/2 Vol i,j (AD)i+i/2,j (3.57 a)

E D = _ f. At
1,j i-1/2 Voli,j (AD+) i-i/2,j (3.57 b)

BD = f At -
l,j 3+1/2 Voli,j (AD)i,j+I/2 (3.57 c)

C D At (AD+) j-i/2 (3.57 d)z,i = - fj-i/2 Voli,j i,

A D At - f (AD-)
1,3 = Voli,j [fi+i/2 (AO+)i+i/2,j i-i/2 i-i/2,j

+ fj+i/2 (AO+)i,j+i/2- fj-i/2 (AO-)i,j-i/2]

(3.57 e)

When the block linear relationship of equation 3.55 is

applied to each interior cell in the finite volume mesh it

yields a large linear system of block algebraic relations

which are ordered in the same manner as the case of second-

order flux splitting alone. The resulting coefficient

matrix has nine nonzero block diagonals with five of these

clustered near the main diagonal. This system of equations

may be solved in the same manner as the system for the
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inviscid terms alone. If the thin-layer approximation had

not been used for the implicit contribution to the diffusion

terms the resulting system of equations would have been more

complicated. For the problems considered in this

investigation, treating only the thin layer terms implicitly

has proven to yield a stable solution procedure.

VI. Smoothing Terms

A second difference of pressure smoother is included to

allow large time steps during the transient phase of steady

state calculations. The smoothing is based on simple second

order smoothing of the conservative variables.

L (U
s i,j) : VSi+I/2(Ui+I, j - Ui, j) - VSi_I/2(Ui,j-Ui_I,j)

+ VSj+I/2 (Ui,j+l - Ui, j) - VSj_I/2 (Ui, j - Ui,j_ I)

(3.58)

The coefficient for the smoother is proportional to the

second difference in pressure.

] Pi+3/2 - 2Pi+i/2 + Pi-i/2 ]
DDP = (3.59)

( Pi+3/2 + 2Pi+i/2 + Pi-i/2 )

The pressure at a surface is taken to be the average of the

pressures in the cells adjacent to the surface. This gives

DDPi+I/2
] Pi+2,j - Pi+l,j - Pi j + Pi-l,j I (3 60 a)

(Pi+2,i + 3Pi+l,j + 3Pi,j + Pi-l,j )
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_ _ + P J
I Pi,j+2 Pi,j+l Pl,J i,j-i

DDPj+I/2 -

( Pi,j+2 + 3PI,j+I + 3P.I,j + p'l,j-I

(3.60 b)

VSi+I/2 = max(0,(CS) (DDPi+I/2) - S) (3.61 a)

VSj+I/2 = max (0, (CS) (DDPj+I/2) - S) (3.61 b)

Since the second difference of pressure is proportional

to the square of the mesh spacing this smoothing is actually

fourth order.

The smoother is treated fully implicitly so that the

U's in equation 3.58 are at the nn time level. Written in

delta law form the smoothing contribution becomes

At nc nc

smoothing = Voli?j[VSi+i/2(Ui+l, j - Ui,j)

nc(onc - u )
- VSi-I/2 z,j i-l,j

(O nc _ on c )
+ VSi+i/2 i,j+l i, 3

(un c _ U nc
- VSi-i/2 z,j i,j-i )

+ VSi+i/2 (6Ui+l, j - 6Ui, j)

- VSi_i/2 (6Ui, j - 6Hi_l, j)

+ VSj+I/2 (6Ui,j+ 1 - 6Ui, j)

- VSj_I/2 (6Hi, j - 6Ui,j_l)] (3.62)

The first four lines above are the explicit contribution

from the pressure smoothing and are added into AU. The

remaining four lines are the implicit contribution which

form a block algebraic relationship, Ls(6U i,j), between the

five cells with indices (i,j), (i,j+l), (i,j-l), (i+l,j),
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and (i-l,j) .

When the smoothing in equation 3.62 is added onto

equation 3.55 the following relationship results.

LI(6U i j) + LD(_Ui j) + Ls(_U i j) = AU i, , , ,J

In this relationship the first four lines in equation 3.62

are included in AUi, j. The form of this relation, and the

resulting system of algebraic equations, is the same as it

was before the smoothing terms were added.

(3.63)

VII. Boundary Conditions

Explicit

With the finite volume method the boundaries of a zone

are placed at cell interfaces and a layer of boundary

cel is surrounds the zone. The only purpose of the boundary

cells is to satisfy the boundary conditions. For the domain

considered there are five possible boundary conditions;

solid wall, plane of symmetry, inflow, outflow, and zonal

interface.

At solid adiabatic walls the pressure and temperature

gradients are assumed to be zero and a no sl ip (zero

velocity at the wall) boundary condition is applied. To

resolve the boundary layer the mesh must be refined near the

wall so that the cell nearest the wall is deep within the

boundary layer. In this case, boundary layer theory shows
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that pressure gradient normal to the wall is a higher order

effect and can be neglected. Similarly, for adiabatic walls

the temperature gradient normal to the wall deep within the

boundary layer is negligable. These boundary conditions are

satisfied by setting the pressure and internal energy in

each boundary cell equal to the pressure and temperature in

the interior cell adjacent to the boundary. The no-slip

condition is satisfied by setting the velocity in the

boundary cell equal and opposite to the velocity in the

adjacent interior cell.

The plane of symmetry is a horizontal line at y--0. At

the plane of symmetry the gradients of pressure, density,

temperature and x-components of velocity are all zero.

These conditions are satisfied by setting the pressure,

density, internal energy, and x-component of velocity in the

boundary cell equal to their values in the adjacent interior

cell. The y-component of velocity is zero at the plane of

symmetry. This condition is satisfied by setting the y-

component of velocity in the boundary cell to the negative

of the y-component of velocity in the adjacent interior

cell.

The treatment of the inflow boundary conditions is

guided by the theory of characteristics. A locally one-

dimensional flow has four characteristic equations with

slopes u, u+c, u, and u-c. If the flow field is supersonic
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then al 1 four characteristic equations are propogating

information in the positive x-direction. In this case all

data must be specified at the inflow boundary. If the flow

is subsonic at the inflow boundary, then one of the

characteristics, the u-c characteristic, has a negative

slope and it propogates information from the interior

upstream to the inflow boundary. In this case only three

items may be specified at the inflow boundary and %-hefourth

item must be allowed to vary as the solution proq_:esses.

For the case of subsonic inflow, the stagnation

pressure, stagnation temperature, and flow angle are

specified. These quantities are related to the static

pressure and static temperature by the following equations:

7

(3.64)

Pt 7+1

(3.65)

T t 7+1

Vu - Tan(0iF ) = (Constant) (3.66)

The first two equations above are simply the isentropic

relations written in terms of the total velocity, V, and the

speed of sound at a sonic throat, a.. The speed of sound at

a sonic throat is calculated from the specified stagnation
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2 2
(a,) - 7+1 RTt (3.67)

Equations 3.64, 3.65, and 3.66 are a system of three

equations in four unknowns: p, T, u, and v. To complete the

system another equation is needed. For all cases considered

the flow angle at the inflow boundary is zero so equation

reduces to v=o and the total velocity, V, is equal to the x-

component of velocity, u.

The last equation to close the system is the

characteristic relation carrying information upstream to the

inflow boundary.

6P 6u [6P

6t pc_-6 = (u-c)[ 6- pc (3.68)

This equation is forward differenced.

6pB - pc6u B - Ax(u-c)At [PI - PB - pc(uI - UB)]n (3.69)

The subscripts I and B indicate the first interior cell and

the inflow boundary cell, respectively. The prefix

indicates the forward in time difference of the variable

following it.

The algebraic equations 3.64, 3.65 and 3.66 can be
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placed in delta law form by considering incremental changes

in the variables p, T, and u.

1

2ptu[l 3.707-1 u 2 7-1 6u B

_PB = 7+1 a. "{+i a.

u SUB
(3.71)

7-1

6TB = - 2_-+-i a. a.

_v = 0 (3.72)

Equations 3.70, 3.71, and 3.72 are three algebraic

equations in the three unknowns 6pB , _TB, and Su B . They are

solved directly for each inflow boundary cell and the

pressure, temperature, and velocity are updated.

The delta law formulation of the isentropic

relations, equations 3.70 and 3.71, simplifies the

implementation of the inflow boundary. Unfortunately, the

linearization error allows the stagnation pressure and

stagnation temperature to vary from the specified values.

To overcome this problem the static pressure and static

temperature in each boundary cell is recalculated from

equations 3.64 and 3.65 using the updated velocity.

The treatment of outflow boundary conditions is also

guided by the theory of characteristics. If the flow normal

to the outflow boundary is supersonic then all
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characteristics have positive slopes and no information

propogates upstream from the boundary cell to the interior

cell. In this case the four locally one dimensional

characteristic equations are used to update the solution in

the boundary cell. If the flow normal to the outflow

boundary is subsonic then the u'-c characteristic propogates

information upstream from the boundary cell to the interior

cell. In this case, one item must be specified at the

boundary cell.

For subsonic outflow the static pressure is

specified. The remaining variables in the boundary cell are

calculated using the three downstream running characteristic

equations. As with the variables specified at the inflow

boundary, the requirement of constant pressure at the

outflow boundary is written in delta law form.

SpB = 0 (3.73)

This equation is combined with the three characterisic

relations.

u' I Atls I

_°B + !Y_PB - vol [PB - OI ÷ Lz(PB - Pl)] --R1
c I c

(3.74 a

6p B + pc6u' B
(U'+C)Atls I

Vol
I

[PB- Pl +pC(U'B - U'l)] = R2

(3.74 b

u' I At ISl

6V'B = VOI [ V'B - V' I] = R3
I (3.74 C
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The above three equations, along with equation 3.73 are four

linear algebraic equations in the four unknowns _B' _U'B'

6 v' B, and 6pB. This system is solved directly and the

boundary cell solution is updated.

At the interzone boundaries the solution in the

boundary cell is set equal to the solution in the

corresponding cell in the adjacent zone.

Implicit

The explicit boundary conditions described previously

use the solution at the latest known time level. Implicit

boundary conditions, however, depend on the solution at the

unknown time level being sought. This means that the

solution in the boundary cells is obtained simultaneously

with the solution in the interior cells. Since the implicit

boundary conditions are generally linearized in the same way

as the interior solution procedure the implicit boundary

conditions will simply be contributions to the large linear

system of algebraic equations described earlier. The goal

of this section is to develope implicit versions of the

boundary conditions described in the previous section and

write them as block algebraic equations relating the

solution change in the boundary cell to the change in the

solution in the adjacent interior cells.



63

The first boundary condition considered is for solid

walls. For viscous flows the velocity at the wall is zero.

To impose this boundary condition it is advantageous to

treat the inviscid fluxes separately from the viscous

fluxes, in the same manner as these boundary conditions are

treated explicity. To enforce zero net flux through the

wall 6U in the boundary cell is set by reflecting the 6U

from the first interior cell; this in effect is the

treatment used for free-slip wall boundary conditions. The

treatment of the viscous fluxes is simply to set the

velocity components in 6U in the boundary cel 1 to the

negative of the velocity components in 6U of the first

interior cel I. Separate treatment of the inviscid and

viscous fluxes at the wall assures that no excessive

dissipation or spurious numerical fluxes of tangential

momentum occur. Details of boundary condition treatment are

described below.

The inviscid flux treatment for the no-flow through the

wall boundary condition is satisfied by the equation for the

boundary cell which relates the change in the solution

within the boundary cell to the change in the solution in

the adjacent interior cell. The viscous flux treatment for

the no-slip boundary condition is implemented by altering

the viscous Jacobians in the equation for the adjacent

interior cell.
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First consider the application of the no-flow boundary

condition. This condition is satisfied by the following

relation

!

6U B = E6U_ (3.76)

where 6U' is the change in the conservative variables based

on velolcities components normal to the boundary, u', and

tangent to the boundary, v'. The conservative variables

based on the global coordinate system are obtained from the

conservative variables based on the local coordinate system

by multiplying the latter by the inverse of the rotation

matrix

6U = R-16U ' . (3.77)

This yields

6U = RER-18U • (3.78)
B I

The E matrix is a reflection matrix:

E = -i 0 (3.79)

0 1

0 0

The coefficient matrices for this block algebraic equation

are loaded into the global coefficient matrix at the

position corresponding to the i,j location of the boundary

cell. For instance, at j=l, i=3 the coefficient matrices
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are written:

-i
B3 = - RER (3.80),i

A3, 1 = I (3.81)

and all other coefficient matrices for this cell are zero.

The no-slip boundary condition for the viscous fluxes

is satisfied by altering the viscous Jacobians. This is

possible because the dependence of the solution in the

boundary cell on the solution at the adjacent interior cell

is known.

where

6U = ENS_u (3.82)B I

ENS[ 00= -i 0 (3 •83)

0 -i

0 0

Now consider the block algebraic relation for the first

interior cell and expand it so that the multiplications by

the viscous and inviscid Jacobians are separate terms•

• ..+(A-) _UI+(AD-) 6UI+(A +) SUB+(AD +) 6UB+... (3.84)

Use equation 3.82 to write the last term of the above

equation in terms of SU I.

...+(A-) 6UI+(A-) 6UI+(A+)6UB+(AD+)ENS6uI+... (3•85)
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This approach eliminates the dependence of the implicit

viscous flux on the change in the solution within the

boundary cell. The coefficient matrices for the global

matrix are then modified as follows for j=2.

At (A+)n
Ci,j = f3-i/2 Voli, 3 i,jj-i (3.86 a)

At [.. + f ((A-)n
Ai, 3 = I Voli,3 " 3-1/2 i,3j-i

+ (AD-) n /2 ENSi,j-i/2 + (AD+)i,j-I )]
(3.86 b)

At a plane of symmetry the inviscid terms are treated

the same as they are at a solid wall (free-slip). The

viscous terms are treated in a manner similar to that for a

solid wall, the only difference being the reflection matrix.

For the plane of symmetry

where

6U B = EFS6u I (3.87)

i]EF S 0 1 0= 0 -i (3.88)

0 0

The plane of symmetry can be located only at j = jl - 1/2 in

the interior zones or ie = ile -1/2 in the exterior zones.

Consider only the plane of symmetry at the j = jl - 1/2

surface.
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At the interior cell adjacent to the plane of symmetry

boundary the two modified coefficient matrices for the block

algebraic relation are

At (B-)n
Bi,jl-i : fjl-i/2 Voli,jl_l i,j-i (3.89 a)

AtA. = I -
1,jl-i Vol l,jl-i

["" + fj1-1/2

- EFS) ..((A+) i,jl-i + (AD+) i,jl-i/2 + (AD) i,jl-i + "] (3.89 b)

This is completely equivalent to what was done in the no-

slip case except the reflection matrix is different.

To treat the inflow boundary condition implicitly the

differencing of the characteristic relation carrying

information upstream must be done implicitly. This is done

by evaluating the spacial differencing using a weighted

average of the difference at the known time level, nc, and

the unknown time level, nn.

6pB - pc6u B = _ (l-f3/2

(u-c)At
)

AX
[PI - PB - c (u I - u B) ] nc

(u-c)_t - u )]
- f3/2 Ax [(PI - PB ) -pc(uI B

nn

(3.90)

This equation is rewritten.
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6PB - pc6 uB -

(U-C)At

aX [ Pl - PB - pc (u I -

(u-c) At
-f3/2 LkX [ 6Pl - 6PB- PC(6UI -

UB )] nc

6u B) ]
(3.91 a)

(u-c)At)
(i - f3/2 AX [SPB -

(u-c)_t

pC6UB] + f3/2

AX [PI - PB - c(u I

(u-c) At
AX [6p I - pC6U I]

- UB) ]nc
(3.91 b)

This equation is the implicit equivalent of equation 3.69.

Provided that SPI and _u I are known this equation, in

combination with equations 3.70, 3.71, and 3.72 can be

solved for _PB' STB' SUB, and _v B.

Equation 3.91 b above is used at the inflow boundary

for the interior zones. For the inflow boundaries in the

exterior zone a simplified equation is used. This equation

is obtained by neglecting the second term of equation 3.91b.

(I - f3/2

(u-c) At
A x ) [copB

(U-C)At

AX

pC6U B ] =

[PI - PB - pc(uI - UB)]nc

(3.92)

The second term of equation 3.91 b is responsible for

coupling the inflow boundary condition to the interior

solution during the solution of the linear system. The

simplified relationship above neglects this coupling. As a

result, the modified boundary condition can be applied as if
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it were an explicit boundary condition. Yet it retains the

unconditional stability of an implicit boundary condition.

The advantage of this approach is simplicity.

The outflow boundary conditions are made implicit by

evaluating RI, R2, and R 3 in equations 3.74, and using a

weighted sum of the solution at the known time level nc and

the unknown time level nn. The result is

(i + d I) (_PB + _-_6pB) - dl(6Pi + _pi ) = R 1 (3.93 a)c

, n
(i + d 2) (SpB + pc6u_) - d2(6Pi - pc6u I) -- R 2

n

(i + dl)6V _ - dlSV i = R 3

n
(i + d 4) (6pB - pc6u_) - d4(_Pi - ;)c6u_) = R 4

6pB = 0 - subsonic

(3.93 b)

(3.93 c)

- supersonic

(3.93 d)

(3.93 e)

!

U I At ISI

where d 1 = Voli ,
(3.94 a)

(u +clAt Isl
d2 = Vol , and (3.94 b)

I

(u_-C) At ISI

d 4 = VolI (3 94 c)

These are four equations relating the change of the

nonconservative variables in the boundary cell to the change

of the nonconservative variables within the first interior
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cell. This bloc.k-linear algebraic relationship is

incorporated into the global system of equations when the

external zone is not included.

When an external zone is included the terms coupling

the exit boundary solution to the interior solution are

neglected. The equations for the outflow boundary condition

then become

n(i + d I) (6pB + 6pB) = R 1
C

n

(i + d 2) (_PB + pc6u_) = R 2

n
(i + dl)SV' _ = R 3

n

(i + d 4) (6pB - pc6u_) = R 4

6pB = 0

- supersonic

- subsonic

(3.95 a)

(3.95 b)

(3.95 c)

(3.95 d)

(3.95 e)

Since these equations are uncoupled from the global system

they are solved first, as if an explicit boundary condition

were being used.

The zonal interface boundary conditions along the lines

dividing the interior zones are satisfied by simply removing

from the global coefficient matrix the rows and columns

corresponding to the zonal interface boundary cells. This

causes the solution in the cell on one side of the dividing

line to interact directly with the solution in the cell on

the other side of the zonal dividing line.

The zonal boundary conditions for the dividing lines
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between the interior and exterior zones is handled

differently. Since the exterior zone uses a different set

of indices it is more convenient to solve it as a separate

set of equations. The systems of equations for the interior

and exterior zones are then approximately solved separately

and are coupled together through interation by mearly

setting the U within this boundary cell equal to its latest

value in the corresponding interior cell of the adjacent

zone. Since the systems are solved using an interative

method, this zonal coupling procedure is implemented in a

manner that is consistent with the overall solution

procedure. More detai is concerning interzone boundary

conditions will be provided in Section VIII.

VIII. System of Linear Algebraic Equations

The implicit method presented here requires the solution

of a large linear system of algebraic equations on both the

predictor and corrector steps. This system is sparse and

well structured as shown in Figure 3.81. In particular,

this system is composed of 9 bands of 4X4 matrices with 5

of these bands clustered near the main diagonal. Thesystem

could be solved directly using a Gaussian el imination

procedure. Unfortunately, this system has a large bandwidth

and a Gaussian elimination procedure, or variation thereof,

would fi 1 1 al 1 of the elements out to the outermost
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diagonal. For a 50X50 mesh this would require storage for

8,000,000 floating point numbers, even though only 360,000

numbers were initially nonzero. Clearly this storage

requirement is unacceptable.

The inefficiencies inherent in the direct methods force

the use of approximate solution procedures. These methods

general ly attempt to approximate the solution of the

original system by solving a series of simpler systems to

which direct methods can be applied efficiently. Two

approximate solution procedures were investigated for the

linear system of Figure 3.8. In the first, the coefficient

matrix for the linear system is approximately factored into

the product of two simpler matices. This approach was

pioneered by Beam and Warming (Reference Ii) and Briley and

McDonald (Reference 12) for schemes based on central

differencing. The second procedure approximately solves the

system using line Gauss-Seidel relaxation.

The approximate factorization approach is to write the

coefficient matrix for the system as the product of two

simpler matrices as shown in Figure 3.9. In this case the

coefficient matrix in Figure 3.8 is factored into a block

pentadiagonal matrix and a matrix that may be rearranged by

row and column operations to become a block pentadiagonal

matrix. The B, B2, C, C2, D, D2, E, and E2 elements

indicated in Figure 3.9 are the same as those defined
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previously.

be low.

The AI and AJ matrices are new and are defined

At
AII, j -- I + Voli,j [fi+i/2 (i + #_.+I/2)(A+) nc• ii,j

+ nc
- fi-1/2 (I+¢i-1/2)(A-)ii-l,j (3.96 a)

At

-- I + Voli j [fi+i/2_ (i +#_+i/2)_ (A+) ncAJI,j• , i,jj

-fj-i/2 (i + %-1 - nc (3 96/2 ) (A)i,jj
b)

where the A + and A- Jacobians are defined in equations 3.10

and the ii and jj indices go through the cycle in table 3.1

presented before. The two resulting block pentadiagonal

systems are solved consecutively using the block

pentadiagonal solver described in Appendix B.

There is an error associated with the approximate

factorization because the product of the two component

matrices results in a matrix which is different than the

desired coefficient matrix. The difference of these two

matrices is the approximate factorization error matrix.

This matrix is shown in Figure 3.10 for first order flux

splitting. Each term of the error matrix involves the

product of an i-direction Jacobian with a j-direction

Jacobian. Since these Jacobians are proportional to the CFL

numbers in the i- and j-directions respectively the product

of these Jacobians is proportional to the product of the CFL

numbers in the i- and j-directions. In general, then, the
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approximate factorization method should perform well when

one or both of the i- or j-direction CFL numbers is small,

and perform poorly when both the i- and j-direction CFL

numbers are large. Unfortunately, thrust reversing nozzles

often contain sharp corners and, near a sharp corner, the

CFL numbers in both the i- and j-directions are generally

large. For these cases the approximate factorization method

has an unacceptable limitation on the time step size.

The line Gauss-Seidel relaxation method reduces the

bandwidth of the system by taking either the upper or lower

off diagonal terms, multiplying them by the solution at the

previous iteration level, and subtracting the result from

the right hand side of the equation. This effectively

applies the contribution of the choosen off diagonal terms

as a deferred correction. Define IT as the iteration level.

On the even iteration levels (IT even) the lower off

diagonal terms are defered and on the odd iteration levels

(IT odd) the upper off diagonal terms are deferred. If the

coefficient matrix is such that the line Gauss-Seidel

relaxation method converges, the approximate solution will

approach the correct solution as the number of iterations

becomes large. For first-order flux vector splitting the

coefficient matrix is diagonally dominant and the line

Gauss-Seidel relaxation procedure is guaranteed to converge

(diagonal dominance is a sufficient condition for



75

convergence of a Gauss-Seidel relaxation procedure). For

second-order flux vector splitting the coefficient matrix is

not diagonally dominant. Despite this, the line Gauss-Seidel

relaxation procedure has not diverged for any of the

problems attempted.

The implementation of the line Gauss Seidel method is

best understood by dividing the coefficient matrix into a

large number of submatrices as shown in Figure 3.8. Each

row of submatrices is a linear block algebraic equation

relating the solutions within five adjacent columns of

cells.

(D2C)6UCi+ 2 + (DC)SUCi+ 1 + (AC)6UC i + (EC)6UCi_ 1

+ (E2C) 6UCi_ 2 = _UC i (3.97)

There is one such relationship for each column of cells with

the submatrix, AC, being a block pentadiagonal matrix and

the submatrices DC, EC, D2C, and E2C being block diagonal

matrices. Defining IT as the iteration level the line Gauss

Seidel method is implemented as follows.

For IT odd:

i) Set the implicit outflow boundary condition at the

right boundary (viewed in the computational plane).

2) Sweep upstream applying the relationship for each

column. For the i-column multiply the DC matrix by 6UC +i'

the D2C matrix by IT6UCi+2, the EC matrix by 6UC IT-Ii-i ' and the
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IT-I
E2C matrix by 6UCi_ 2 . Then subtract the sum of these

products from the right hand side and solve the block

pentadiagonal system for 8UCIT.. Repeat this until the left1

boundary is reached.

For IT even:

3) Set the implicit inflow boundary condition at the

left boundary (viewed in the computational plane).

4) Sweep downstream repeating the process in step 2

IT-I _T-1except that DC and D2C now multiply 6UCi+ 1 and 6UC +2 ' and

IT IT 2EC and E2C now multiply _UCi_ 1 and 6UC _ .

5) Repeat the process until the desired iteration

level has been reached. It was found that only two to four

iterations were required to achieve stability and that

overall convergences of the time marching procedure was not

improved by additional iterations.

The line Gauss-Seidel relaxation procedure was adopted

because the time marching scheme based on approximate

factorization exhibited undesirable instabilities. For

example, one of the test cases is the symmetric, fully

deployed thrust reversing nozzle shown in Figure 4.1. The

key feature of this nozzle is the sharp corner at the

intersection of the lower flap wall with the forward

reverser port wall. The initial conditions for the solution

are stagnation conditions within the nozzle, a low static

pressure at the exit, and zero velocity everywhere. A
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physical device that might provide these conditions is a

diaphram at the nozzle exit plane which is broken at time

t=0. When the diaphram is broken an expansion wave travels

upstream through the nozzle until the inflow boundary is

reached. The inflow boundary conditions then begin pumping

enough air through the inflow boundary to keep the

stagnation pressure and temperature at the specified values.

When approximate factorization is used an instability occurs

shortly after the expansion wave has passed the sharp

corner.

To determine the cause of the instabilities a numerical

experiment was performed using first-order flux vector

splitting. The implicit coefficient matrix (for the

predictor step), based on the transient flow field shown in

Figures 3.11 through 3.13, was solved using both approximate

factorization and line Gauss-Seidel relaxation with 2, 3, 4,

5, 6, and 20 iterations. Figure 3.14 shows the resulting

solutions as a function of the CFL number for the normalized

time difference of density, 6p/p , in the first cell after

the corner near the wall. It is clear that the approximate

factorization procedure gives poor results in this case but

that the line Gauss-Seidel relaxation gives very good

results if 3 or more iterations are used. Figure 3.15

shows similar results for the normalized time difference of

total energy. While of limited scope, this comparison
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provides substantial evidence that the Gauss-Seidel

relaxation procedure is superior for flows with sharp

corners.

The time marching scheme based on the line Gauss-Seidel

relaxation procedure has been successfully applied to this

fully deployed thrust reversing nozzle. Details of these

calculations are given in Chapter 4, Section 2, but it is

significant to note that this method was stable with CFL

numbers an order of magnitude larger than the CFL number at

which the approximately factored method was unstable.

IX. Accuracy and stability Analysis for Model Equation

The solution procedure presented in the preceeding

sections is a two-step expl icit-impl icit method. This

method locally varies the degree of implicitness so that the

procedure is explicit in regions where the explicit

stability criterion is satisfied, and fully implicit when

the explicit stability criterion is exceeded significantly.

In this section the accuracy of this method is analyzed at

its two extremes (explicit and fully impl icit) for the

following simple model equation (the linear wave equation).

u t + },ux @

Also in this section, the fully implicit method is shown to

be unconditionally stable.
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Accuracy

First consider the two-step explicit method, with

spacially second-order upwind differencing, applied to the

wave equation.

3 n 4 n in
n+li uin c _'_uiu = - -z 1_-_u'-" +_-ui-2)z (3.98 a)

n+li 2uiln _-uln+li _i =3 n+li _ui-14n+l 1 n+lu = + -yc( u -+ _yui- 2) (3.98 b)

where c = },A____t
ax

This two-step scheme may be combined to form a single-step

scheme in the linear case.

n+l n c(3un_i - 4 n 1 nu i = ul• - _ui_ 1 + _ui_ 2)

2
c 9 n 24 n 22 n 8 n 1 n

(_u i + -+ _-- _ui_ 1 -_ui_ 2 _ui_ 3 +_Ui_ 4) (3.99)

To evaluate the accuracy of this method the values of u at

positions other than (i,n) are approximated using Taylor

series expansions about point (i,n). Proceeding in this

manner, it is found that the second term on the right hand

side of equation 3.99 is a second-order accurate

approximation to the first partial derivative of u with

respect to x.

3 n 4 n 1 n = [Ax u - _x3u + O(_x5)] n_ui - _ui-i + _ui-2 x xxx i (3.100)

Likewise, the last term is a second-order accurate

approximation to the second partial derivative of u with

respect to x.
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9 n 24 n 22 n
_u i - --_ui_ 1 + --_ui_ 2

8 n 1 n
_ui_ 3 + _ui_ 4

2 4 + 0 (Ax5) ] n (3.101)= [AX2 Uxx -T Ax UXXXX i

Equations 3.100 and 3.101 are substituted into equation
n+l

3.99, along with a Taylor series expansion for u i . The

result is

_ At _ u ] + _ Ax2u + H O.Tut + kUx 2 [utt - xx xxx " " (3.102)

The leading term in the truncation error is eliminated by

differentiating equation 3.102 with respect to t and

subtracting _ times the derivative of equation 3.102 with

respect to x.

_ _ At - Aut - _2Utxx xxxutt _2Uxx 2 [uttt tx + k3u ] + H.O.T.

(3.103)

Substituting into equation 3.102 yields:

At2 - ku t - _u + A3uut + kUx = +--_[Uttt tx txx XXX ]

_Ax 2 + H.O.T.+ UXX x
(3.104)

The first term of the truncation error in equation 3.104 can

be eliminated in a similar manner. The reduced equation is

2
the wave equation with the leading term being of order Ax .

= _%Ax2u (3 105)
Ut + UX j XXX
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The two step explicit method with second order upwind

differencing is therefore second order accurate in both

space and time.

Now consider the fully implicit procedure with

spacially second order upwind differencing.

n+l n c 3 n+l 4 n+l 1 n+l-
u i = u I [_ u i i-i i-2 |• - - yu + _u (3 106 a)

n+2 n+l 3 n+2 4 n+2 I n+2

u i = u i - c{_u i i-i i-2- yu + _u } (3.106 b)

n+2
n+l 1 u n + u } (3 106 c)u i = 2"{ 1 i

Equation 3.106 may be combined, in the linear case, to

form a single step scheme.

n+l

u i
_ un = c 3 n 4 n 1 n

i [_ui - _-Ui_l + _-ui_2]

_ 2c[3un+l 4 n+l 1 n+l
2 i - _ui-i + _ui-2]

c___[ u n _ 24u n n _ 8u n n
+ 82 9 i i-i + 22ui-2 i-3 + ui-4]

c n+l 4un+l n+l _ n+l n+l
-_--[9u i - 2 i-i + 22ui-2 - t_ui-3 + ui-4]

(3.107)

For this equation it is best to expand the Taylor series

about the point (i,n+l). The results for the four terms

following the equals sign in equation 3.107 are given below•

3 n 4 n in

_u i - _ui_ 1 + _ui_ 2 =

3 n+l 4 n+l 1 n+l

yu i - 2ui_ 1 + yui_ 2

lax u x - 3AtAx Utx ]n+l + H 0 T
1

(3.108 a)

3
Ax

xx ]n+l + H 0.T= [AXUx 3 UX i " "

(3.108 b)
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9 n 24 n 22 n 8 n 1 n
_u i _Ui_l + --_ui_ 2 - _ui_ 3 + _ui_ 4

= [AX2Uxx 4AtAx 2 Utxx ]n+l + H O.T1

9 n+l 24 n+l 22 n+l 8 n+l 1 n+l

_u i - --_ui_ 1 + --_ui_ 2 - _ui_ 3 + _ui_ 4

2 4 xx]n+l= [AX2Uxx - T Ax Uxx i

(3.108 c)

(3.108 d)

Equations 3.108 are substituted into equation 3.107, along

n
with a Taylor series expansion to u i.

(u t + _Ux) _ At - 62 (utt _Utx - k2Uxx ) + H.O.T. (3.109)

This equation is reduced in the same way that equation 3.102

is reduced. The resulting reduced equation is

u t + _u x 3_t_2Uxx= + 0(_t2,_x 2) (3.110)

The fully implicit method with spacially second order upwind

differencing is second order accurate in space, first order

accurate in time.

Stability

The stability of the fully implicit scheme is studied

using a Von Neumann stability analysis. The analysis

consists of writing the solution as a Fourier series and

searching for frequencies for which the error grows

exponent ial ly.

u(x,t) = _bm(t)e ikmx (3.111)
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Since the model equation is linear, it is sufficient to

consider an arbitrary term of the Fourier series:

ikmx
u (x,t) --b (t)e (3.112)m m

This al lows the solution at the point (i-l,n) to be

conveniently written in terms of solution at the. point

(i,n) .

Um(Xi_l,tn) = Um(Xi,tn) e -i_ (3.113)

where _=km x is a frequency parameter.

Apply the analysis to equations 3.106

n+l n
u i = -±ql u i (3.114 a)

m

n+2 n+l n
u i = g2 u i = gl g2 ui (3.114 b)

n+l 1 n n
u i = _ {i + gl g2 } ui = g3ui (3.114 c)

where

gl = g2 = 1

3 4 -i_ 1 -i_
1 + c[_- _e + ye ]

(3.115)

For the scheme to be stable the modulus of amplification

factor, g3' must be less than or equal to one. This is

equivalent (equations 3.114 c and 3.115) to requiring the

modulus of gl to be less than or equal to one. Thus the
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modulus of the denominator of equation 3.115 must be greater

than or equal to one.

III : I i + c 3 4-i# i-i2#- _-e + _-e. ] I > 1
gl [_ --

(3.116)

Expand equation 3.116 in terms of the trigonometric

functions and multiply by its conjugate.

1
3 4 cos_ + 1 cos2#] }: { 1 + c [2 2

+ c 2[4sin_ - 1 2ys in2_ ]

2

Ill : (Re)
gl

(3.117 a)

2 + (im)2 (3.117 b)

2
The term (Im) is always greater than or equal to zero,

therefore having (Re) 2 greater than or equal to one is

sufficient for the stability of the scheme. Expand cos2# in

equation 3.117 a using the double angle formula.

3 4 os2# _ y](Re) : 1 + c[_- _cos# + c 1

2
(Re) = 1 + c( 1 - cos#)

(3.118 a)

(3.118 b)

From equation 3.118 b it is clear that (Re) is always

greater than one. The fully implicit method is therefore

unconditionally stable.
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Figure 3.4 Finite volume cell.



89

Subsonic Flow

t

(u '>0)

Supersonic Flow (u'>O)

t

S direction

I
Oirection

Figure 3.5 Propagation of Information Along Locally One-
Dimensional Time Dependent Characteristics.



90

Shock Wave - Overspecified

> cul i

// uj lu,-c_l/
!

u i+1 < c i+1

-c)i+ 1

Si+l/2 direction

Sonic Point - UnOerspecified

ci ( '

/ °V I

ui+ 1 > c i+ 1

Si+l/2 direction

Figure 3.6 Characteristics Resulting from Steger and

Warming Flux Splitting.



91

First Order Fluxes

U_+l/2

I

I

I
i

I

t
i

U

U+

i+1/2

i-i i i+l i+2
Si+1/2

direction

Second Order Fluxes

u7
z+i/2

I

I

I
!
I

I

I

I

I

U

+

Ui+l/2

' _ Si+t/2
i-I i i+I i+2

direction

Figure 3.7 Extrapolations to the i+1/2 Surface for First-
and S_cond-Order Flux Splitting.



92

!

_ • • C.J

+ I 1
• r-g .r_ -i_l -r-I

4- + I I

_ CJ CJ _J

_ CJW

yj/ 
c_J
O

SYf

c_

u_4
o

o0

c_

°_-_

_L4

I I



93

I

+

D

I
-r'_

.r-I

CO

C_

II

CJ
-I

_r-4

O

O

-r-1

-r"i

U_4

_q
GO

÷

-r-I

.r-_

m

I

.r-I

II

.r-I

D



94

ii

KI .11._

,._ ÷
÷

MII _1.,-i

÷ U

÷
÷

I

-r.1

÷ ÷

_ "'_

÷ ,_.,

g

I I

1

-i-i

0
(J

r_

0

0

0

N
-f-I

0

r_
E

X
0

r_



95

I

I

I I

I i

I! I

I

X

r-i

O'_

O+

O

4J

N

0

O
r_

r0

X
O

o

O
4_

O

o
,-4

0

e_

(D

O_



96

N
N
o
z

,-_

o

0



97

IIIIIII11+
W_WWWWWW_W
0000000000
0000000000
0000000000
O000000000

O]

E_

r--1

_J

.rM

O9

0

0

[D

Pq



98

• / II I

tlltffflitt_

IIIItl¢ t
tlt_

i
i

i i

-it

c_
°r-I

0

C_
G;
:>

.,-I
C)
0

:>

i--t

-,-I



99

AiISNBO/(AiISN30) 0

O

O

E
-H

O

C_

E
0

.t-t

0

u _

• m

_crl

_._

0

_ m
N _

E _

0 0

2J_
,e-,_



100

\

N _ _r o _r

o o o o
I

_gU3N3/ (_gU3N3) 0

0

0

0
I

4_

00

E
o_

X

0

C)-,

E
0

'4-1

_J

u,-I
0

_ m

._ _)

E_

0

(I) m

N _

_ ._.._

cd_

0 0

_m

0_

f_



CHAPTER 4

Results and Conclusions

I. Preliminary Comments

The computer program described in Chapter 3 has been

applied to five thrust reversing nozzle configurations. The

first configuration, described in Section II of this

chapter, is a fully deployed thrust reversing nozzle with a

flow turning angle of 130 degrees. The second

configuration, described in Section Ill, is a 50% deployed

thrust reversing nozzle. The third configuration, described

in Section IV, is a 50% deployed thrust reversing nozzle

with the forward thrust port vectored downward 15 degrees.

The final two configurations are transient flow problems.

In Section V, a calculation of a rapid change in thrust

vectoring angle is described and in Section VIa calculation

of a rapid change from partial to full thrust reverser

deployment is described.

In Sections II through IV the computed results are

compared with available experimental data. In all three

cases the discharge coefficients and normalized thrusts are
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compared. The discharge coefficient is the mass flow divided

by the ideal mass flow and the thrust is normalized by the

ideal thrust. Formulas for the ideal mass flow and ideal

thrust are given in Appendix C.

II. Fully Deployed Thrust Reversing Nozzle

The first test case used during this investigation is

the fully deployed thrust reverisng nozzle depicted in

Figure 4.1. This configuration was choosen because

considerable experimental data is available for it. Re and

Leavit (Reference i) have measured the variation of thrust

and discharge coefficient with nozzle pressure ratio (NPR)

and Putnam and Strong (Reference 3) have made wall static

pressure measurements for a series of nozzle pressure

ratios.

The internal flow field for this nozzle was calculated

using first-order flux splitting for a range of nozzle

pressure ratios from 2.0 to 7.0. The calculations were

performed using the 32x27 single zone mesh in Figure 4.2.

This mesh is divided into two regions for mesh generation

purposes. The lower region is generated to keep the mesh

nearly orthogonal to the wall. The mesh is refined along

the flap and forward reverser port wall to resolve the

boundary layer. No attempt has been made to resolve the

boundary layer along the blocker. Since the boundary layer
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along the blocker is embedded in a highly favorable pressure

gradient it should be very thin and not significantly effect

the flow.

A typical convergence history for these calculations is

shown in Figure 4.3. This plot shows the variation of mass

flow error with time step for a nozzle pressure ratio of

three. The first-order accurate solution required 48 time

steps to converge. The maximum CFL number for these

calculations was set to 50,000 for the first four steps,

100,000 for the next four steps, and 150,000 for the forty

remaining time steps.

The flow within this nozzle was also calculated for

NPR=3.0 using second-order flux vector splitting and the

mesh shown in Figure 4.4. The internal mesh is the same as

that in Figure 4.2 and an external mesh was added to

estimate the effect of the external flow. The second-order

flux splitting is less robust than first-order flux

splitting and the CFL number must be set lower. In this

case the maximum CFL number was set to 2,000. Starting from

a first-order solution 360 time steps were required to get a

converged second-order solution.

The adequacy of the mesh refinement within the

turbulent boundary layer is presented in Figure 4.5 for the

second-order calculation with NPR=3.0. This plot gives the
+

distribution of the law of the wall coordinate, y , for the
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mesh points closest to the wall. The variable on the

abscissa, I, is an index which varies from one at the inflow

boundary, to 15 just before the sharp corner, to 31 at the

outflow boundary. Baldwin and Lomax (Reference 7) state

+that a y of less than two for the mesh point nearest the

wall, is adequate to resolve the turbulent boundary layer.
+

As shown in Figure 4.5, the y for the mesh point nearest

the wall is less than two everywhere except at the entrance
+

and near the sharp corner. The y at the entrance is close

enough to two that the resolution should be sufficient.

Near the corner the flow is rapidly accelerated and the

boundary layer becomes very thin. In this case, the

equilibrium assumption inherent in the Baldwin Lomax model

is questionable. In any case this region is very small (two
+

points with y significantly greater than two) and it is

not likely to adversely affect the flow. Overall, the mesh

refinement near the wall is considered adequate.

Pressure contours in the region of the exit port for

nozzle pressure ratios of three, and five are given in

Figures 4.6 and 4.7, respectively. The pressures, obtained

using the first-order method, are normalized by their

respective specified stagnation pressures and all cases had

the same exit pressure.

The pressure contours, obtained from the second-order

method for a nozzle pressure ratio of three, are shown in
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Figure 4.8. In all three figures the high gradients near

the corner are evident. The second-order contours, Figure

4.8, are nearly the same as the first-order contours (Figure

4.6) for pressures greater than half the stagnation

pressure. However, there are considerable differences along

the forward wall of the reverser port with the second-order

method giving lower pressures than the first-order method.

Mach number contours in the region of the exit port for

nozzle pressure ratios of three and five are given in

Figures 4.9 and 4.1_, respectively. Note that the NPR=3.0

case has a small region of supersonic flow near the exit,

and the NPR=5.0 case has a much larger region of supersonic

flow in the reverser port. The Mach number contours,

obtained from the second-order method with NPR=3.0, are

shown in Figure 4.11. The second-order method yields higher

Mach numbers than the first-order method (Figure 4.9). It

also appears that the boundary layer separation bubble, on

the forward wall of the reverser port, is larger in the

second-order case than the first-order case.

Velocity vectors are also given in the region of the

exit port. Figure 4.12a shows the velocity vectors for

NPR=3.@. A thin layer of separation is evident on the

forward wall of the reverser port. This separation is shown

more clearly in Figure 4.12b. Figures 4.13a and 4.13b show

the velocity vectors for NPR=5.0. The separation region is
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smaller than that calculated for NPR=3.0. For comparison,

the velocity vectors, obtained from the second-order method

with NPR=3.0, are shown in Figure 4.14a and 4.14b. The

boundary layer separation obtained from the second-order

method, Figure 4.14b, is more extensive than that obtained

from the first-order method, Figure 4.12b. In the first-

order solution the separation covers 31 percent of the

forward wall of the reverser port wall and in the second-

order case it covers 45 percent of the wall.

The calculated variation of discharge coefficient with

nozzle pressure ratio is given in Figure 4.15. Also shown

are the discharge coefficients obtained experimentally by Re

and Leavit (Reference i). It is seen that the analysis

overestimates the discharge coefficient by two to four

percent. This is to be expected since the effect of the

sidewal 1 boundary layers is neglected. The side wal 1

boundary layers will reduce the effective throat area and

hence the mass flow. Also shown in Figure 4.15 is the

second-order calculation at NPR=3.0 (single point). The

discharge coefficient from the second- order calculation is

slightly higher than from the first- order method. The

comparison with the experimental is good for discharge

coefficient.

The calculated variation of thrust with nozzle pressure

ratio is compared with the experimental results of Re and
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Leavitt in Figure 4.16. The first-order results indicate a

lower amount of reverse thrust than the experimental results

with errors ranging from twenty-nine percent of the ideal

thrust at NPR = 2.0 to eleven percent at NPR = 7.0. Also

shown in Figure 4.16 is the thrust obtained from the second-

order method. This thrust compares better with experiment,

the error being 14.6 percent of the gross thrust compared to

a 22.0 percent error from the first-order method.

The errors in thrust warrant some discussion. The

error is related to the size of the separation bubble

calculated on the forward wall of the reverser port. In the

calculations the size of the separation bubble seems to be

underestimated and the pressure on this surface is

overestimated. This hypothesis is substantiated in part by

the improved results obtained from the second-order method.

As mentioned earlier, the separation bubble is larger in the

second-order results than in the first-order results. This

hypothesis is also supported by the pressure field within

the nozzle.

Figures 4.17 through 4.19 compare the calculated

pressure field with sidewall pressures measured by Putnam

and Strong for NPR=3.0. All three figures are for lines,

parallel to the blocker wall, passing from the plane of

symmetry to the exit plane. The line for Figure 4.17 is

0.203 cm from the blocker wall. At this location the
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pressures calculated with the second-order method compare

very wel 1 with the measured sidewall pressures. The

pressures calculated with the first-order method also

compare well with the experimental results, but not as well

as the second-order results. Since this line is close to

the blocker it is an indication that the blocker pressure

distribution is accurately predicted. Since the

contribution to the thrust from a surface is approximately

the integral of the pressure over the surface area, the

contribution to the thrust from the blocker is also

accurately predicted.

The line for Figure 4.18 is 0.838 cm from the blocker

wall, or approximately half way to the forward wall of the

reverser port. Again both first-order and second-order

solutions compare well with the experimental results over

most of the line. However, the calculated and experimental

results differ considerably within the exit port.

The line for Figure 4.19 is 1.437 cm from the blocker

wall, or nearly to the forward wall of the reverser port.

Here the sharp corner is identified by the rapid drop in

pressure. Both the first- and second-order results do well

upto the corner, but smear out the expansion and miss the

minimum pressure. The second-order solution is better than

the first-order solution, missing the minimum pressure by 12

percent of the stagnation pressure as opposed to a 20
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percent discrepancy with the first-order solution.

The final comparison, Figure 4.20, of calculated

pressures with experiment is for pressures along the flap,

rounding the sharp corner, and down the forward wall of the

reverser port. These pressures are plotted in terms of the

arclength along the wall from the inflow boundary. The

experimental results from four lateral stations are also

plotted. Note that there is considerable variation amongst

the experimental results, particularly near the exit plane.

This variation indicates the magnitude of the three

dimensional effects. It is interesting to note that two

pressure distributions, both lying within the range of

experimental pressures presented in Figure 4.20, can yield

thrusts varying by up to six percent of the ideal thrust.

The most that can be expected of a two-dimensional solution

is for it to be within this range.

Unfortunately, the calculated pressures do not lie

within the range of pressures measured by Putnam and Strong

(Reference 3). Both the first- and second-order

calculations do well before the sharp corner, but predict a

recompression along the forward wall of the reverser port

before it is indicated by the experiment results. Thus,

both the first- and second-order calculations overestimate

the pressure, and hence force, on the forward wall of the

reverser port. This accounts for the low calculated reverse
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thrust compared to the thrust obtained by Re and Leavitt

(Reference i). It should be noted that the second-order

results are considerably better than the first-order

results. This indicates that the discrepancy between

calculation and experiment is, in part, due to numerical

dissipation. The amount of numerical dissipation present in

a calculation depends on the refinement of the mesh and the

skewness of the grid, as wel 1 as the order and type of

method used. A coarser or more highly skewed mesh has

greater numerical dissipation than a finer or nearly

orthogonal mesh. Unfortunately, the complex geometries

considered force some degree of skewness to the mesh. The

refinement, however, is controlled by the user. To obtain

an accurate solution all features of the flow must be

resolved. Examination of the velocity vectors in Figure

4.14b shows that the shear layer at the edge of the

separation bubble is in a region of coarse mesh. Refining

the mesh in this region should substantially reduce the

amount of numerical dissipation in this region, and improve

the solution. Unfortunately, this calculation was not

possible due to limited computer resources.

Another item which might contribute to the error in the

pressure distribution along the forward wall of the reverser

port is the forward wal 1 of the reverser port in the

turbulence model. An overestimation of the eddy viscosity
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could reduce the size of the separation bubble and cause the

early recompression seen in Figure 4.20. The Baldwin Lomax

turbulence model, described in Section III of Chapter i, has

been shown to yield satisfactory results for some separated

flows (Reference 7) but has never been tested on a problem

as complex as the thrust reversing nozzle.

Finally, the flow does have significant three-

dimensional effects as mentioned earlier. The spanwise

variations in flap pressure distributions (Figure 4.20) are

probably due to large scale vortices present in the reverser

port. How these vortices interact with the boundary layer

separation is not clear. It is possible that the separation

bubble is enlarged by the vortices. If this is the case an

accurate prediction of thrust for this geometry can never be

obtained from a two-dimensional calculation. In any case,

the two-dimensional calculation does provide good

quantitative results for the discharge coefficient and

reasonable qualitative results for the thrust.

III. Partially Deployed Thrust Reversing Nozzle

The second test case is the partially deployed thrust

reversing nozzle shown in Figure 4.21. This nozzle

geometry, tested by Carson, et.al. (Reference 2), is based

on a realistic multifunction nozzle design presented by

Stevens, Thayer, and Fullerton (Reference 13). The
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experimental results include discharge coefficients and

thrust for a range of nozzle pressure ratio and ambient

external Mach number. A calculation is presented for this

nozzle with a nozzle pressure ratio of two and an ambient

external Mach number of zero.

The calculation was performed using the mesh shown in

Figure 4.21. Due to limited computer resources, this mesh

is very coarse and none of the wall boundary layers are

adaquately resolved.

The resulting discharge coefficient is .89 compared

to .993 from the experiment of Carson, et.al. There is

evidence that the mesh is inadaquate for accurately

calculating the mass flow. The problem was run to

convergence using the first-order accurate results and then

switched to second-order accuracy. The first-order result

for discharge coefficient is only .78 compared to .89 from

second-order accuracy. If the mesh were sufficiently fine

the difference would be less dramatic.

It should be noted that the areas of the reverser ports

for the model tested by Carson, et.al, are somewhat larger

than for the nozzle used in the calculation, the combined

areas of the three exit ports in the experiment were 36.11

2
cm as opposed to 34.89cm 2 for the calculation (based on two

nozzles, each with a width of 7.77 cm). Carson, et.al.

based their ideal mass flow calculation on the throat area
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2
of the basel ine forward thrust nozzle, 34.24 cm .

Correcting the calculated discharge coefficient (by simply

multiplying by the ratio of areas) yields a discharge

coefficient of 0.92.

The calculated thrust is found to be slightly higher

than the measured thrust. The calculated thrust, normalized

by the ideal thrust based on the measured mass flow, is

0.253, whereas the measured thrust, normalized by the ideal

thrust based on the measured mass flow, is 0.23. This

comparison is suprisingly good considering the coarseness of

the mesh.

The pressure contours, Mach number contours, and

velocity vectors for this nozzle are given in Figures 4.22

through 4.24. It is clear from Figure 4.23 that the flow

remains subsonic until it leaves the exit port. Thus, the

internal flow is influenced by the external flow and the

external zone is needed.

IV. Partially Deployed Thrust Reversing Nozzle with

Vectoring

The third test case, shown in Figure 4.25, is the same

50% deployed thrust reversing nozzle discussd in Section III

with the forward thrust port vectored 15 ° downward. This

nozzle was also tested by Carson, et.al., and the discharge

coefficient and thrust were obtained for a range of nozzle
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pressure ratios and two free stream Mach numbers. The

calculation was made at a nozzle pressure ratio of two with

an ambient free stream Mach number of zero.

As with the unvectored case the calculation was

performed using a coarse mesh. The mesh is composed of four

zones: three internal zones and an external zone. The

dimensions of the mesh for all three internal zones is

21x10. For the external zone the mesh dimensions are

17x107.

The calculation was run to convergence first order

accurate (64 time steps). The resulting discharge

coefficient is 0.77, which is consistent with the results

for the unvectored case. The calculated thrust, normalized

by the ideal thrust, is 0.146 and the normal force,

normalized by the ideal thrust is 0.065 Note that the ideal

thrust is based on the measured mass flow (Appendix C).

The thrust and normal force normalized by the ideal

thrust based on the calculated mass flow are 0.19 and 0.085.

The experimental results for this case had considerable

asymmetry. The thrust was measured for vectoring of 15 °

both upward and downward. With nozzle flow vectored

downward the normalized thrust was 0.18 whereas it was 0.34

when vectored upward. The computed normalized thrust is at

the lower end of this range. Likewise, the computed jet

o
turning angle of 24 lies between the experimental results
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of -5 ° and 45° .

The calculated pressure contours, Mach number contours,

and velocity vectors for this case are shown in Figures 4.26

through 4.28. It appears, from the Mach contours in Figure

4.27 that there is no supersonic flow. The results for the

unvectored nozzle, however, indicate small regions of

supersonic flow just outside each exit port when second-

order accuracy is used. It appears that the first-order

accuracy, in combination with the coarse mesh, has resulted

in excessive total pressure loss. This seems to be the

reason for the low discharge coefficient. If this

calculation was done using second-order accuracy, or the

mesh was refined, the calculated discharge coefficient would

be much closer to the measured discharge coefficient.

V. Transient Change in Thrust Vectoring Angle

A calculation was made of a transient change in thrust

vectoring angle. The nozzle was initially unvectored and

the vectoring angle was changed from 0 ° to 30 ° over a period

of .3 msec. The actual wall velocity followed a cosine

function of time with the maximum velocity being nearly half

the speed of sound. This very fast change was necessary for

transient effects to be observed. The initial solution is

shown in Figures4.29 through 4.31. The mesh uses three

internal zones with the lower and upper zones having
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dimensions 23x16 and the middle zone having dimensions 23x8.

The nozzle pressure ratio is 5.0.

The effects of the moving wall are seen by comparing

the pressure contours during the final stages of the

reconfiguration, Figure 4.34, with the pressure contours

after the reconfiguration is complete, Figure 4.3?. The 0.2

contour in Figure 4.34 extends from the exit of the rear

port half the distance to the corner. In Figure 4.37 this

contour has relaxed so that it connects to the wall near the

exit port and intersects the exit plane at a higher

position. No experimental data is available for this case.

VI. Transient Change in Thrust Reverser Deployment

A calculation was made of a transient change in degree

of thrust reverser deployment. The nozzle was initially 70

percent deployed with the rear port width being 0.05 ft.

The rear port was then closed, as the reverser ports were

opened, over a period of .3 msec.

The results, shown in Figures 4.38 through 4.46,

indicate much more dramatic transient affects than the

transient thrust vectoring case. As shown in the pressure

contours, (Figure 4.43) the closing rear port compresses the

air near the port to much greater than the stagnation

pressure at the inflow boundary. As the port closes the

pressure becomes large enough that the flow near the
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entrance to the port reverses direction and the air flows

back into the nozzle as shown in Figures 4.42a and 4.42b.

There is no experimental data available for this case.

VII. Conclusions

An implicit finite volume program has been developed

for the calculation of two-dimensional thrust reversing

nozzle flows. Thrust reversing nozzles typically have sharp

corners, and the rapid expansion and large turning angles

near these corners lead to unacceptable time step

limitations when conventional approximate factorization

methods are used. In this investigation these limitations

are overcome by replacing the approximate factorization with

a line Gauss-Seidel relaxation. This method is implemented

with a zonal mesh so that flows through complex nozzle

geometries can be efficiently calculated.

Results are presented from calculations using both

first- and second-order fully upwind differencing. In most

cases, the second-order method compared better with the

experimental results than the first-order method. The

second-order method was limitted, by stability, to lower CFL

numbers than the first-order method. The lower CFL numbers

resulted in longer run times for the second-order method.

(Typically, 360 time steps for the second-order method

compared to 48 time steps for the first-order method).



118

Despite this limitation, the second-order method still

requires two to three orders of magnitude fewer time steps

than an explicit method when turbulent boundary layers are

adequately resolved.

The comparisons of the calculated results with

experiment were mixed. For the fully deployed nozzle

(Section II of this chapter) the calculated discharge

coefficient compared well with experiment but the amount of

reverse thrust was underestimated. Conversely, for the two

partially deployed nozzles (Sections III and IV) the

calculated thrust compares well with experiment but the

discharge coefficient is underestimated. The

underestimation of the discharge coefficient for the

partially deployed nozzles is undoubtably due to the coarse

mesh used for the calculation. The underestimation of the

reverse thrust for the fully deployed nozzle is thought to

be caused by a combination of insufficient mesh density,

limitations of the turbulence model, and three-dimensional

effects in the experiment which cannot be predicted with a

two-dimensional model (see Section II of this chapter).

The computer program is robust, efficient, and capable

of calculating the complex flows within thrust reversing

nozzles.
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// J -_

Figure 4.29 Mesh for Steady State Flow Field Calculation
Prior to Thrust Vectoring Angle Change.

Time = 1.36 msec.

Thrust Vector Angle = O.O deg.
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Figure 4.30 Steady State Velocity Vectors Prior to Thrust

Vectoring Angle Change.

Time

Thrust Vector Angle

= 1.36 msec.

= 0.0 deg.
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Figure 4.31 Steady State P/Pt Contours Prior to Thrust

Vectoring Angle Change.

Time = 1.36 msec.

Thrust Vector Angle = 0.0 deg.
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Figure 4.32 Mesh for Transient Flow Field Calculation

During Thrust Vectoring Angle Change.

Time = 1.66 msec.

Thrust Vector Angle = 28.90 deg.
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Figure 4.33 Transient Flow Field Velocity Vectors During

Thrust Vectoring Angle Change•

Time = 1.66 msec.

Thrust Vector Angle = 28.90 deg.
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Figure 4.34 Transient Flow Field P/P_ Contours During

Thrust Vectoring Angle C_ange.

Time = 1.66 msec.

Thrust Vector Angle = 28.90 deg.
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Figure 4.35 Mesh for Transient Flow Field Calculation

After Thrust Vectoring Angle Change.

Time =

Thrust Vector Angle=

1.71 msec.

30.00 deg.
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Figure 4.36 Transient Flow Field Velocity Vectors After
Thrust Vectoring Angle Change.

Time
Thrust Vector Angle

= 1.71 msec.
= 30.00 deg.
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Figure 4.37 Transient Flow Field P/Pt Contours After
Thrust Vectoring Angle Change.

Time

Thrust Vectoring Angle

= 1.71 msec.

= 30.00 deg.
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Figure 4.38 Mesh for Steady State Flow Field Calculation
Prior to Transition from Partial to Full

Thrust Reverser Deployment.

Time = 1.44 msec.

Rear Port Width = 0.0500 ft.
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Figure 4.39 Steady State Flow Field Velocity Vectors Prior
to Transition from Partial to Full Thrust

Reverser Deployment.

Time = 1.44 msec.

Rear Port Width = 0.0500 ft.
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Figure 4.40 Steady State
from Partial

Deployment.

P/Pt Contours Prior to Transition
to Full Thrust Reverser

Time = 1.44 msec.

Rear Port Width = 0.0500 ft.
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Figure 4.41 Mesh for Transient Flow Field Calculation
During Transition from Partial to Full Thrust
Reverser Deployment.

Time = 1.70 msec.
Rear Port Width = 0.0048 ft.
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Figure 4.42a Transient Flow Field Velocity Vectors During
Transition from Partial to Full Thrust

Reverser Deployment

Time = 1.70 msec.

Rear Port Width = 0.0048 ft.
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Figure 4.42b Detail of Transient Flow Field Velocity

Vectors Near Entrance to Rear Port (Boxed

Region on Previous Plot).

Time = 1.70 msec.

Rear Port Width = 0.0048 ft.
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Figure 4.43 Transient Flow Field P/Pt Contours During
Transition from Partial to Full Thrust

Reverser Deployment.

Time = 1.70 msec.

Rear Port Width = 0.0048 ft.
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Figure 4.44 Mesh for Transient Flow Field Calculation
After Transition from Partial to Full
Thrust Reverser Deployment.

Time = 1.79 msec.
Rear Port Width = 0.0020 ft.

L
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Figure 4.45 Transient Flow Field Velocity Vectors After

Transition from Partial to Full Thrust

Reverser Deployment.

Time = 1.79 msec.

Rear Port Width = 0.0020 ft.
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Figure 4.46 Transient Flow Field P/P_ Contours During
Transition from Partial _o Full Thrust

Reverser Deployment.



I •

169

References

Re, R.J. and Leavitt, L.D., "Static Internal

Performance Including Thrust Vectoring and

Reversing of Two-Dimensional Convergent-Divergent

Nozzles," NASA TP-2253, Feb. 1984.

0 Carson, G.T., Capone, F.J. and Mason, M.L.,

"Aeropropulsive Characteristics of

Nonaxisymmetric-Nozzle Thrust Reversers at Mach

Numbers From 0 to 1.20," NASA TP-2306, May 1984.

. Putnam, L.E. and Strong, E.G., "Internal Pressure

Distributions for a Two-Dimensional Thrust-

Reversing Nozzle Operating at a Free-Stream Mach

Number of Zero," NASA TM-85655, Dec. 1983.

0 Cline, M.C.,

Computation

Compressible,

Lab., Report

"VNAP2: A Computer Program for

of Two-Dimensional, Time-Dependent,

Turbulent Flow," Los Alamos Nat.

LA-8872, Aug. 1981.

De Goldberg, V.C., Gorski, J.J., and Chakravarthy,

S.R., "Transonic Turbulent Flow Computations for

Axisymmetric Afterbodies," AIAA-85-1639, July

1985.



170

o Anderson, D.A.,

R.H., Computational

Transfer, Hemisphere

Washington, 1984.

Tannehill, J.C., and Pletcher,

Fluid Dynamics and Heat

Publishing Corporation,

• Baldwin, B.S. and Lomax, H., "Thln-Layer

Approximation and Algebraic Model for Separated

Turbulent Flows," AIAA Paper 78-257, Jan. 1978.

o MacCormack, R.W., "Current Status of Numerical

Solutions of the Navier-Stokes Equations," AIAA-

85-0032, Jan. 1985.

So MacCormack, R.W., "The Effect of Viscosity in

Hypervelocity Impact Cratering," AIAA Paper 69-

354, Apr.-May 1969.

I0. Steger, J.L. and Warming, R.F., "Flux Vector

Splitting of the Inviscid Gasdynamic Equations

with Application to Finite-Difference Methods,"

Journal of Computational Physics, Vol. 40, 1981,

pp. 263-293.

II. Beam, R.M. and Warming, R.F., "An Implicit Finite-

Difference Algorithm for Hyperbolic Systems in



171

Conservation-Law-Form," Journal of Computational

Physics, Vol. 22, Sept. 1976, pp. 87-110.

12. Briley, W.R. and McDonald, H., "Solution of the

Multidimensional Compressible Navier-Stokes

Equations by a Generalized Implicit Method,"

Journal of Computational Physics, Vol. 24, pp.

372-396.

13. Stevens, H.L., Thayer, E.B., and Fullerton, J.F.,

"Development of the Multlfunction 2-D/C-D Nozzle,"

AIAA-81-1491, July 1981.

14. Warming, R.F., Beam, R.M., and Hyett, B.J.,

"Diagonalization and Simultaneous Symmetrization

of the Gas-Dynamic Matrices," Mathematics of

Computation, Vol. 29, Oct. 1975, pp. 1037-1045.

15. Burden, R.L., Faires, J.D., and Reynolds, A.C.,

Numerical Analysis, Prindle, Weber and Schmidt,

Boston, Mass., 1978.

16. Peery, K.M. and Forester, C.K., "Numerical

Simulation of Multistream Nozzle Flows, AIAA

.Journal, Vol. 18, No. 9, Sept. 1980, p. 1088.



172

APPENDIX A

Diagonalization of the Jacobians for the Inviscid Fluxes

The inviscid fluxes through a surface of arbitrary

orientation are

Pq

PI _ = < 0vq°Uq++PPSXsy) I_I

(e+p) q (a.l)

where q = us + vs and s and s are the components of a
x y x y

unit vector normal to the surface.

The flux in equation a.l is a homogeneous function of

the conservative variables U. So

_i._ --_u

where A is the Jacobian of [_I" _ with respect to U.

Following Warming et.al., (Reference 14) the Jacobian

matrix, A, may be diagonalized by a set of three similarity

transformations.

A = T-I R-Is-IAsR T I_l

Here T is a matrix which transforms incremental changes in

conservative variables to incremental changes in

nonconservative variables, R rotates from the global

reference frame to a local reference frame with axis normal

and tangent to the surface, and S transforms from

incremental changes in the nonconservative variables to

incremental changes in the characteristic variables. The



173

diagonal matrix,

A= diag [u', u', u'+c, u'-c]

contains the eigenvalues of the Jacobian matrix, A.

The transformation matrices, and their inverses are

given below.

T -----

m i

i 0 0 0

-u/p i/p 0 0

-v lp o lip o

a(_-l) -u (_-i) -v (_-i) (_-I
i

-I
T

i

i 0 0 0

u P 0 0

v 0 P 0

1

a pu pv (___
i

R

I 0 0 0

0 s -s 0
y x

s s 0
x y

0 0 0 i

-i
R

i i

i 0 0 0

0 s s 0
y x

0 -s s 0
x y

0 0 0 I
i

i
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S ____.

S -I =

m

1 0 0

0 1 0

0 0 pc

0 0 -pc

1 0 i/2c 2

0 1 0

0 0 i/2pc

0 0 1/2

i

-i/c 2

0

1

1

1/2c 2

0

-i/2pc

i/2

In the above matrices

a= 0.5(u 2 + v 2)

and c is the speed of sound.
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APPENDIX B

Block Pentadiagonal Solver

The block pentadiagonal system of linear algebraic

equations, Figure B.I, is solved using a block LU

decomposition. The matrix is factored into two matrices, a

block lower tridiagonal and a block upper triangular with

identity matrices on the diagonal as shown in Figure B.2.

The LU decomposition and inversion of the L matrix is

done in one sweep in the direction of reducing the j index.

i) Ajl = Ajl ' ['jl = A CjI' %1 jl EjI'

2)

Yjl = A31R1 jl
A ^ ^

BjI_1 = BjI_I, AjI_I --Ajl_l - Bjl_IFjl

= A -I - B (991]51-1 jl-I [Cjl-i jl-i

(991_1 -- Aj _IEjI_I , YjI-I jl-i [RjI-I jl-lYjl

3) B'3 = B.3 - D.3 Fi_+2
^ A

4) A. = A. - B F. - D.8.
3 3 J 3 +1 3 3+2

5) F 3. = A -lj [C.3 - BjOj+I], Sj =
^ A

yj = A -I [R. -J 3 BjYj +I

6) repeat steps 3 - 5 for

3 J'

- Djyj+ 2 ]

j = jl-3 to 1

-i
In the above equation the vector [y] is equal to [L] [R].

All that remains is to solve the equation

[u] [ u] = [y]

by sweeping in the direction of increasing j index.

7) 6UI = Yl
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8) _U2 = Y2 - F2 6UI

9) _Uj = yj - Fj 6Uj_ 1 - Oj _Uj_ 2

10) repeat step 9 for j = 3 to jl

This algorithm requires the inversion of a 4x4 at each j

location. This is done using a Crout decomposition

(Reference 15).



177

I

I i
I

L I

>i

_n

e4
I

,-4
,r--j

u_

7 I
,-4 r-4

7 i

•r-_ -rI -r_

7 ?
•r-_ .r-_ "r'_

<_) .<: :,_

7 I

,-4

O
_D

-_'4

4J

.z
D
O

Cn
-,-4

! I



178

L J

| _I

J

z
o

,v _g x
u ._ H
0 _ nr

I- 3E
Z
ILl
n

w

P'-I

_J

x

4J

=E

P_

0

r_

c_

D
0

0

c-
O

-i,-4

-L--I

0
n
E
0
D

e,,,I

°_"'1



179

APPENDIX C

Ideal Mass Flow and Thrust

The formula for the ideal mass flow is derived from

* * *

= uA = a A (c.l)

where the * indicates the value of the quantity at a sonic

throat. Using the isentropic relations

Tt 7_i M 2T - 1 + -- and

(C.2)

7p

t _ [i 721 M2] 7-Ip +
(c.3)

the definition of the speed of sound

2
a = 7RT , (c.4)

the equation of state

P = pRT , (c.5)

and the fact that the Mach number is unity at a sonic throat

gives

1

Pt 2 7-I 27 1/2 *

mi - RT t [7---_] [7--$-I-RTt ] A (c.6)

The formula for the ideal thrust is obtained from

F = hue (c.7)

where ue is the flow at the exit of a ideal ly expanded

nozzle (Pe = Poo )" The formula for u is obtained from
e

2 2M2u = a (c.8)
e e e

and equations c.2 - c.5. The result is
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7-1
27 ] }ue = {_-__IRTt[l - ( )7

1/2
(c.9)

Before substituting u from equation c.9 into equatione

c.7 it should be decided which mass flow, _, to use. In the

experimental results of Re and leavitt (Reference i) and

Carson, et.al., (Reference 2) the measured mass flow is used

in the calculation of the ideal thrust. To be consistent,

we will also use the measured mass flow when making

comparisons with experiment.

7-1

F i : I_ {72__ RT t [i- (p_)_] }

1/2

(c.10)
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